ASX Announcement

23 July 2025

June 2025 Quarterly Exploration Results

82km of drilling and \$9M invested in resource development and exploration in Q4, FY25

Perth, Western Australia, 23 July 2025: **Westgold Resources Limited (ASX | TSX: WGX – Westgold** or the **Company)** is pleased to announce the results of exploration and resource development activities during Q4 FY25.

Highlights *

MURCHISON

The Starlight mine continues to deliver impressive drilling results from both the Nightfall and Starlight lodes:

- 10.00m at 26.42g/t Au from 149.00m in NF1050GC01;
- **4.43m** at 264.37g/t Au from 111.00m and 15.15m at 17.11g/t Au from 173.00m in NF1050GC42;
- 14.05m at 11.43g/t Au from 214.00m in ST825RD06;
- 4.00m at 34.69g/t Au from 180.00m in ST840RD12; and
- 7.50m at 17.04g/t Au from 123.00m in ST840RD22.

Exciting results from the emerging Polar Star lode at the Bluebird - South Junction mine include:

3.03m at 157.10g/t Au from 270.00m in 25BLDD001.

Drilling at the high-grade **Great Fingall** mine shows the potential of the Golden Crown and Great Fingall Reefs along with that of newer discoveries such as Sovereign:

- 7.23m at 12.25g/t Au from 312.00m in 24GCDD017;
- 7.76m at 6.56g/t Au from 312.00m in 24GFDD093; and
- 15.96m at 23.17g/t Au from 264.00m in 24SVDD038A.

SOUTHERN GOLDFIELDS

At Beta Hunt, the maiden Mineral Resource Estimate for Fletcher zone Stage 1 exceeded expectations, delivering 2.3Moz from 1km of the known 2km strike

Drilling within the Western Flanks zone at Beta Hunt reinforces Westgold's view of the upside across this under-drilled yet extensive gold system, with exceptional results including:

- 8.03m at 101.72g/t Au from 8.00m in AWLINKDD-15AG;
- 55.50m at 4.51g/t Au from 179.00m in AWLINKDD-24AG; and
- 6.90m at 372.32g/t Au from 8.00m in WWSP4-31AG.

\$9M spent on exploration and resource development in Q4 FY25 - with \$43M invested for full FY25.

16 underground and 2 surface drill rigs operating.

^{*} True width has not been calculated

Westgold Managing Director and CEO Wayne Bramwell commented:

"This quarter Westgold completed 82km of drilling and invested \$9M in resource development and exploration. The delivery of a maiden Mineral Resource Estimate of 2.3Moz from Stage 1 of the Fletcher Zone at Beta Hunt was a major milestone and double the mid-point of the Stage 1 Exploration Target for Fletcher from just 1km of the known 2km strike length.

The flow of strong drill results from our largest and emerging mines continues and shows the untapped value within our existing Mineral Resource base. The results from Starlight, South Junction, Great Fingall and Beta Hunt are outstanding and continue to build confidence in our portfolio.

Westgold will build on the \$43M invested in exploration and resource development in FY25. In FY26 our drill teams will continue to extend mine lives across the portfolio, test our best emerging exploration targets and unlock the inherent value we hold across two of Western Australia's most prolific goldfields."

Plate 1: Visible gold in hole 25BLDD001 targeting the Polar Star lodes (Bluebird – South Junction mine) from an interval of 3.03m at 157.10g/t Au from 270.00m

Overview

In Q4 FY25, Westgold invested **\$9M** in exploration and resource definition across its portfolio. The Company drilled a total of **81,561m**, as summarised by the table below.

Table 1: Group Drilling Statistics - Q4 FY25

Region	Diamond (m)	RC Drilling (m)	AC Drilling (m)	Auger (m)	Total (m)
Murchison	43,438	3,579	1,373	15	48,405
Southern Goldfields	30,702	2,454	0	0	33,156

Exceptional intercepts returned this quarter from drilling activities are listed below:

Table 2: Exceptional drilling intercepts returned in Q4 FY25 (+100 gram metre intervals)

Lode	Hole	Collar N	Collar E	Collar RL	Intercept (Downhole)	From (m)	Dip	Azi	Total Lengt h (m)	Gram metres
Starlight										
Nightfall	NF1050GC01	7,199,054	636,388	52	10.00m at 26.42g/t Au	149	-12	109	170.6	264.24
	NF1050GC40	7,199,055	636,388	53	26.10m at 6.62g/t Au	160	2	99	91.6	172.74
	NF1050GC42	7,199,055	636,388	53	4.43m at 264.37g/t Au	111	3	88	54.9	1,171.15
					15.15m at 17.11g/t Au	173				259.21
Starlight	ST835GC02	7,198,562	636,544	-159	17.08m at 6.17g/t Au	26	16	33	51.7	105.35
	ST835GC03	7,198,583	636,540	-159	9.62m at 14.35g/t Au	41	13	7	70	138.02
	ST825RD06	7,199,024	636,446	-102	14.05m at 11.43g/t Au	214	-51	51	316.6	160.64
	ST840RD12	7,198,701	636,410	-159	4.00m at 34.69g/t Au	180	-22	23	200.5	138.75
Great Finga	u									
Sovereign	24SVDD038A	6,961,714	584,227	141	15.96m at 23.17g/t Au	264	-53	264	317.42	369.79
Beta Hunt			•							
Fletcher	FF475SP-61AEA	6,543,693	375,041	-473.05	27.00m at 4.24g/t Au	472	-55	235	905.98	114.50
	WF490DD-47AE	6,543,672	374,949	-483.95	50.00m at 2.83g/t Au	661	-49	262	952	141.50
Western Flanks	AW325SP-04AG	6,544,549	374,490	-322.15	13.00m at 18.18g/t Au	124	-35	254	236.7	236.30
	AWLINKDD- 15AG	6,544,332	374,724	-286.05	8.03m at 101.72g/t Au	8	-34	255	180.05	816.80
	AWLINKDD- 20AG	6,544,332	374,724	-286.05	14.75m at 8.71g/t Au	214	-44	236	236.6	128.50
	AWLINKDD- 24AG	6,544,332	374,722	-286.05	55.50m at 4.51g/t Au	179	-45	219	281.7	250.30
	WWSP4-31AG	6,544,073	374,941	-397.89	6.90m at 372.32g/t Au	8	-36	248	281.7	2,569.00
Fletcher	FF475SP-61AEA	6,543,693	375,041	-473.05	27.00m at 4.24g/t Au	472	-55	235	905.98	126.50
Bluebird										
Bluebird	25BLDD066	7,043,942	641,579	47	6.71m at 15.50g/t Au	100	-44	101	148.82	104.01
Polar Star	25BLDD001	7,043,581	641,434	105	3.03m at 157.10g/t Au	270	11	113	308.5	476.01
South Junction	25BLDD017	7,043,581	641,433	103	21.50m at 7.16g/t Au	185	-19	148	408.12	153.94

Westgold had 16 underground drill rigs and 2 surface drill rigs operating at the end of the quarter. The surface drill rigs were operating at Fortnum and Reedy, and the underground rigs were operating at Starlight (3), Bluebird (3), Great Fingall (2), Big Bell (1), Beta Hunt (6) and Two Boys (1).

Murchison

Westgold drilled 48,405m in the Murchison in Q4 FY25.

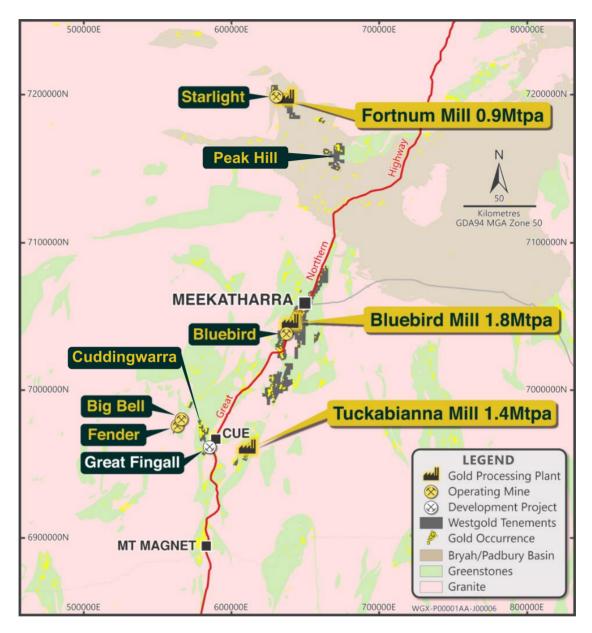


Figure 1: Murchison location map

Resource Development Activities

Starlight (Fortnum)

Given the ongoing Resource Definition and production success at Nightfall, the Company has continued to prioritise geology work in this area at its Starlight mine. This quarter Nightfall has once again provided a string of high-grade results ahead of the production front of the mine, some of the most specular being:

- 10.00m at 26.42g/t Au from 149.00m in NF1050GC01; and
- 4.43m at 264.37g/t Au from 111.00m and 15.15m at 17.11g/t Au from 173.00m in NF1050GC42.

Despite the ongoing prominence of Nightfall, the Starlight lodes continue to make a strong contribution to output from the mine, with better results from Starlight this quarter including:

- 14.05m at 11.43g/t Au from 214.00m in ST825RD06;
- 4.00m at 34.69g/t Au from 180.00m in ST840RD12; and
- 7.50m at 17.04g/t Au from 123.00m in ST840RD22.

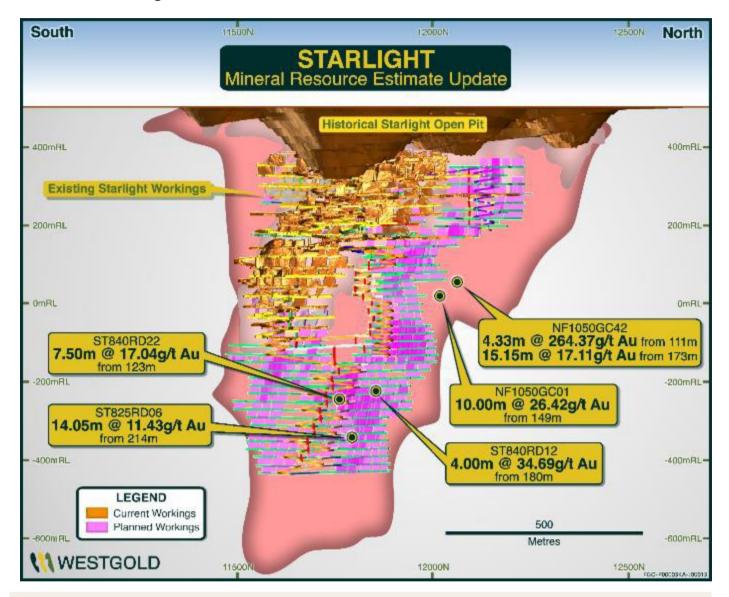


Figure 2: Starlight schematic long-section showing better drill results returned in Q4 FY25

Bluebird-South Junction (Meekatharra)

At Bluebird - South Junction, the focus of drilling works has reflected the expanding mine scale. Drilling has targeted the Bluebird lodes, the large-scale South Junction Mineral Resource and the growing Polar Star lodes, with highlights including:

- 6.71m at 15.50g/t Au from 100.00m in 25BLDD066 (Bluebird);
- 3.03m at 157.10g/t Au from 270.00m in 25BLDD001 (Polar Star); and
- 21.50m at 7.16g/t Au from 185.00m in 25BLDD017 (South Junction).

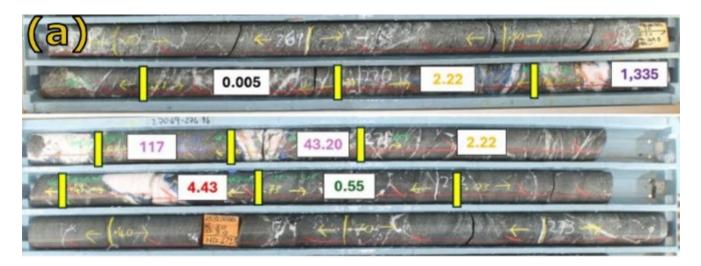


Figure 3: Hole 25BLDD001 targeting the Polar Star lodes (Bluebird – South Junction mine) showing (a) interval of 3.03m at 157.10g/t Au from 270.00m and (b) example of visible gold from the interval

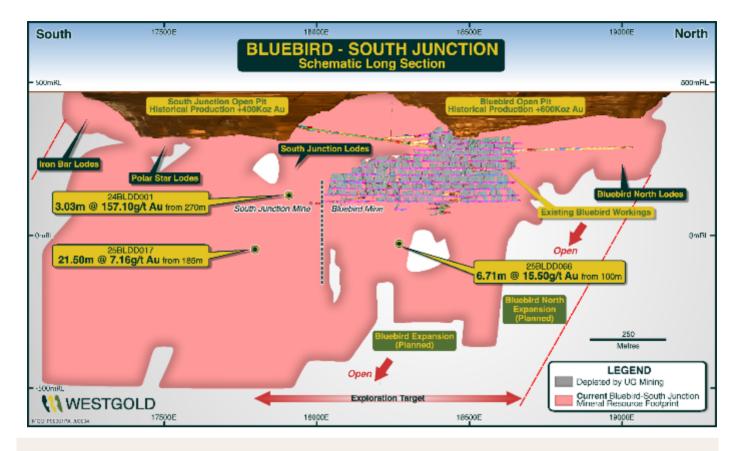


Figure 4: Bluebird-South Junction schematic long-section showing select near mine drill results in Q4 FY25

Big Bell (Cue)

At Cue, the ongoing success of re-accessing the Big Bell Upper Cave (Upper Cave) has allowed Westgold to allocate more focus to this area of the mine in the FY26 Big Bell mine plan. In Q4 FY25, production from the Upper Cave totalled 60% of total mine output from Big Bell, validating this approach.

Given the Upper Cave's increasing importance to the medium-term plan, Westgold has recommenced drilling in this area of the mine, providing the data required for consistent and elevated rates of profitable production. Results such those presented below highlight the significant opportunity that exists in the Upper Cave, which is independent from the Lower Cave, located higher in the mine, and critically, already capitally and operationally developed.

- 21.20m at 3.20g/t Au from 19.00m in 25BBDD0003;
- 12.03m at 5.68g/t Au from 25.00m in 25BBDD0015; and
- 14.67m at 3.83g/t Au from 24.00m in 25BBDD0016.

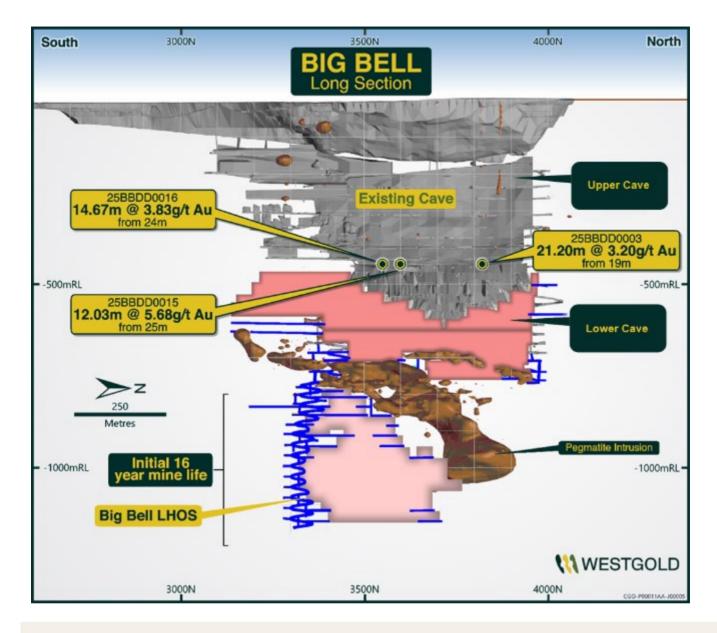


Figure 5: Big Bell schematic long-section showing better drill results returned in Q4 FY25

Great Fingall (Cue)

The early mining opportunity at Great Fingall was executed this quarter, with production starting from the Great Fingall Flats, an area outside the scope of the Great Fingall Feasibility Study mine plan.

With the initial production milestone reached, Westgold has stepped up its drilling effort, with multiple rigs defining and infilling early production areas from the Golden Crown and Great Fingall virgin stopes, as well as advancing opportunities outside of the current mine plan such as the Sovereign Reef.

Better results returned from this work at Golden Crown in the current quarter include:

- 7.23m at 12.25g/t Au from 312.00m in 24GCDD017; and
- 8.22m at 6.68g/t Au from 194.00m in 25GCDD013.

At Great Fingall the high-grade nature of the primary orebody is demonstrated by results such as:

- 7.76m at 6.56g/t Au from 312.00m in 24GFDD093; and
- 6.27m at 7.75g/t Au from 270.00m in 24GFDD096.

Whilst at Sovereign, the significant exploration upside of the mine complex is highlighted by:

- 4.85m at 3.37g/t Au from 71.00m in 24SVDD023; and
- 15.96m at 23.17g/t Au from 264.00m in 24SVDD038A.

Westgold is following up on this drilling success with two rigs active and a third to be deployed into Great Fingall in Q1, FY26.

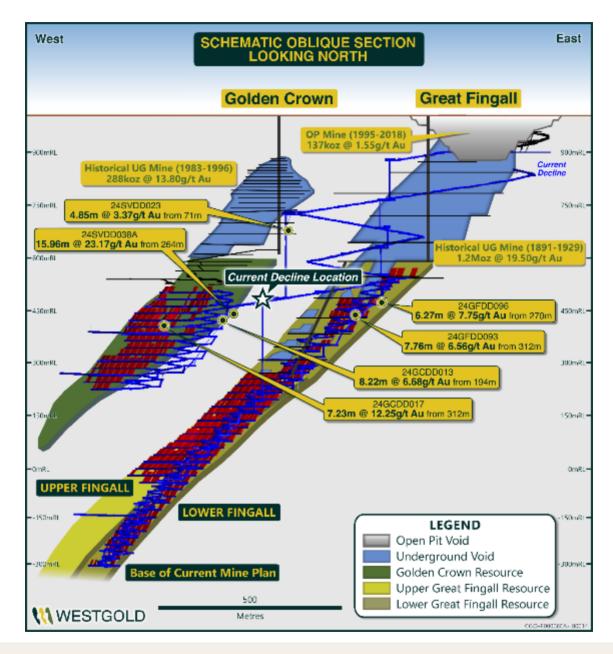


Figure 6: Great Fingall schematic oblique-section looking North (select drill results from Q4 FY25

Greenfields Exploration Activities

Greenfields activities in the Murchison included:

- The completion of the Murphy Creek Aircore (AC) drilling program at Peak Hill (Fortnum);
- Commencement of the Labouchere RC program (Fortnum); and
- Commencement of the Triton Rand Gap diamond drilling program at Reedy (Meekatharra).

The Labouchere and Triton – Rand Gap programs were ongoing at the end of the quarter, with results expected in Q1 FY26. Drill planning was ongoing throughout the quarter, with priority targets at Jubilee (Peak Hill) and Meekatharra North (Meekatharra) ready for execution.

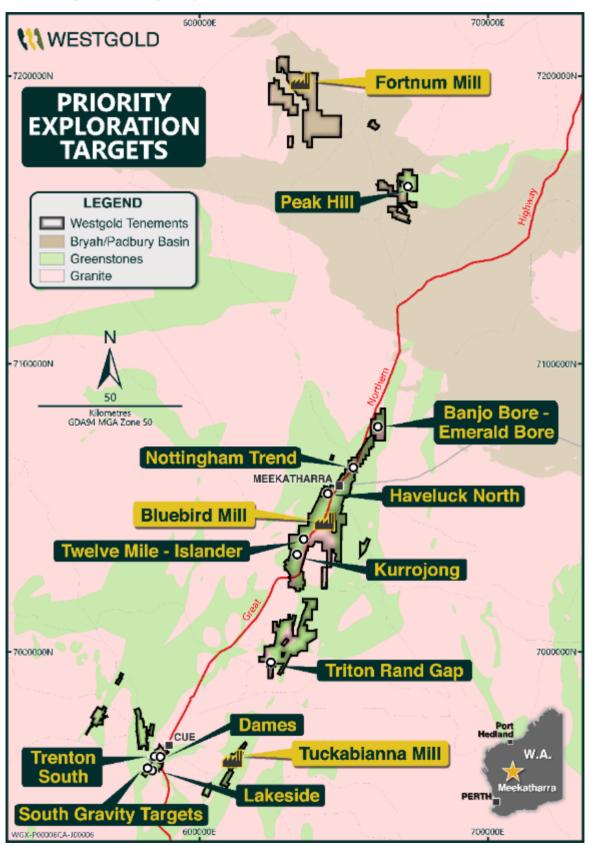


Figure 7: Murchison priority Greenfields exploration targets for CY25

Fortnum - Labouchere RC Program

During the quarter, the Labouchere RC program at Fortnum commenced with 21 holes for 3,167m drilled by the end of the period. The program is targeting potential structural repeats south of the historic Labouchere mine which produced 1.2Mt at 2.47g/t Au for 95.4Koz, as well as follow-up testing of targets defined by recent aircore drilling.

Assay results for the program were pending at the end of the quarter.

Peak Hill - Murphy Creek AC Program

The Murphy Creek AC drill program was completed early in the quarter with 28 holes for 1,416m drilled during the current quarter and 56 holes for 3,315m drilled across the program. The program tested identified targets along strike to the northwest of the Company's Durack deposit which currently hosts an Indicated and Inferred Resource of 2.9Mt at 1.2g/t Au for 111Koz¹. This potential strike extension has not previously been effectively tested due to the presence of very shallow Bryah Basin volcanic "cover".

Significant results from this program included:

- 6.00m at 1.76g/t from 52.00m to EOH including 1.00m at 5.96g/t in hole 25MCAC045.
- 13.00m at 0.93g/t from 39.00m including 4.00m at 2.22g/t from 45.00m in hole 25MCAC012.
- 5.00m at 1.20g/t from 59.00m to EOH in hole 25MCAC020.

These early-stage results are very encouraging, and a follow-up drill program is being designed to assess the potential for basement mineralisation.

Reedy - Triton - Rand Gap DD Program

The Triton – Rand Gap diamond drilling program at Reedy's commenced during the quarter, with 2 holes completed for 1,142.1m, and two holes in progress for a further 459.2m of drilling to the end of the quarter.

The Triton and Rand mines have produced 1.90Mt at 6.20g/t Au for 379Koz from past open pit and underground mining. This program is targeting the plunge intersection between high-grade lodes plunging north from Triton and high-grade lodes plunging south from Rand.

Assay results for 25REDD002 were received during the quarter, with a single significant intersection returned from a narrow zone of silica-biotite alteration in the Reedy Dolerite. The remainder of the program is still being completed, and assays are pending.

¹ Refer to ASX announcement titled "2024 Mineral Resource Estimate and Ore Reserves – Updated" – 23 September 2024

Southern Goldfields

Westgold drilled 33,156m in the Southern Goldfields in Q4 FY25.

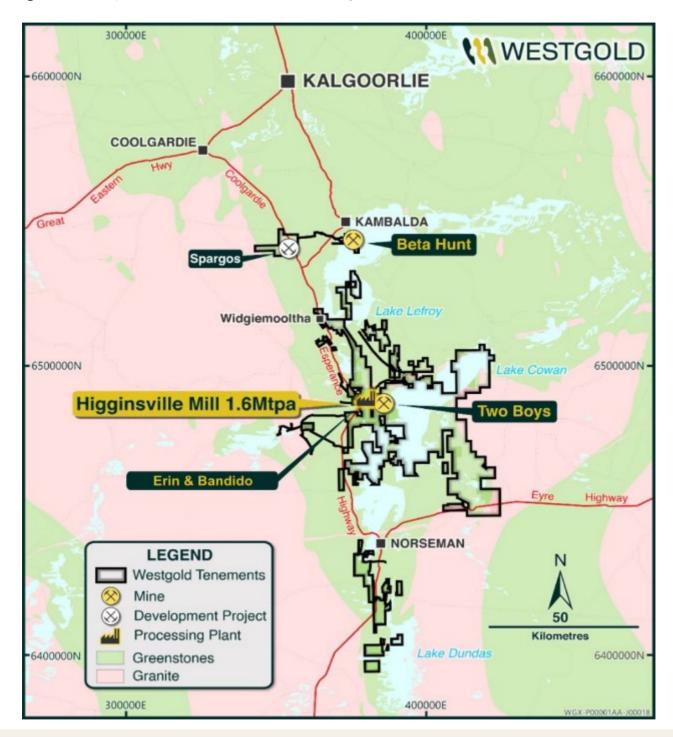


Figure 8: Southern Goldfields Location Map

Resource Development activity

Beta Hunt (Kambalda)

Six drill rigs have remained active at Beta Hunt throughout Q4, focused on continuing to expand the Mineral Resource base and provide the necessary definition to allow for efficient mining execution.

Across the Company, the most significant event in the Resource Definition space during the quarter was the delivery of the maiden Mineral Resource Estimate for Stage 1 of the Fletcher zone, totalling **31Mt at 2.3g/t Au for 2.3Moz Au**. Fletcher is a gold-bearing shear zone located approximately 50 metres west of the Western Flanks vein system, within the Hunt Block of the Beta Hunt Mine at Kambalda. It is interpreted as a parallel, structural analogue to the Western Flanks and A Zone deposits, and is considered the **third** major mineralised shear zone system hosted in the Hunt Block.

Table 3: Stage 1 Fletcher Zone Mineral Resource Estimate

Stage 1 Fletcher Zone Mineral Resource Estimate										
Classification	Tonnes (t)	Grade (g/t Au)	Ounces (Au)							
Measured	0	0.00	0							
Indicated	3,708,000	2.5	295,000							
Inferred	27,266,000	2.3	2,030,000							
Total	30,974,000	2.3	2,325,000							

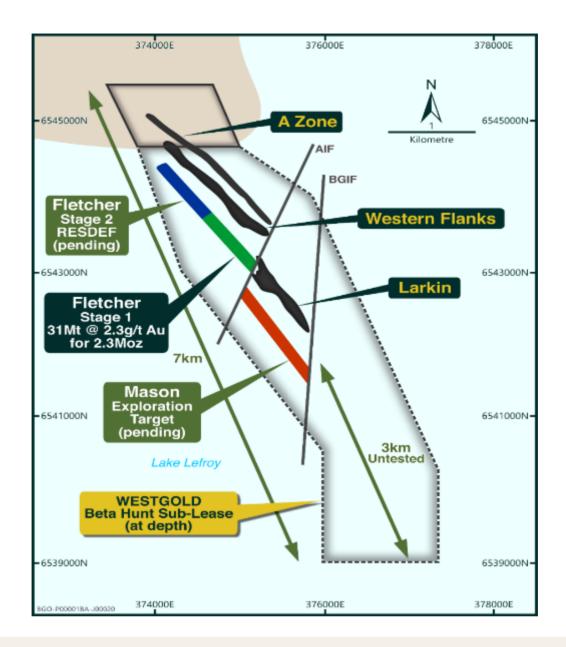


Figure 9: Plan view schematic of the Fletcher zone at Beta Hunt

In September 2024, Westgold declared a global Fletcher Zone Exploration Target of 23-27Mt at 2.1-2.5g/t Au for 1.6-2.1Moz, including a Stage 1 Exploration Target of 12–16Mt at 2.1-2.5g/t Au for 0.8-1.2Moz Au. An aggressive drilling campaign has resulted in a Mineral Resource Estimates that has doubled the mid-point of the Stage 1 Exploration Target². Westgold is continuing to capitalise on this success with drilling ongoing at Fletcher, producing results during the current quarter such as:

- 27.00m at 4.24g/t Au from 472.00m, 10.00m at 4.48g/t Au from 725.00m and 10.00m at 3.56g/t Au from 742.00m in FF475SP-61AEA;
- 21.00m at 2.03g/t Au from 210.00m, 32.40m at 1.79g/t Au from 292.00m, 2.05m at 34.41g/t Au from 335.00m and 31.00m at 1.69g/t Au from 709.00m in WF440DD-37AE; and
- 16.00m at 5.56g/t Au from 245.00m, 22.00m at 2.64g/t Au from 368m and 50.00m at 2.83g/t Au from 661.00m in WF490DD-47AE.

² Refer to ASX release titled "Fletcher Exploration Target Defined at 1.6 - 2.1Moz Au" – 16 September 2024.

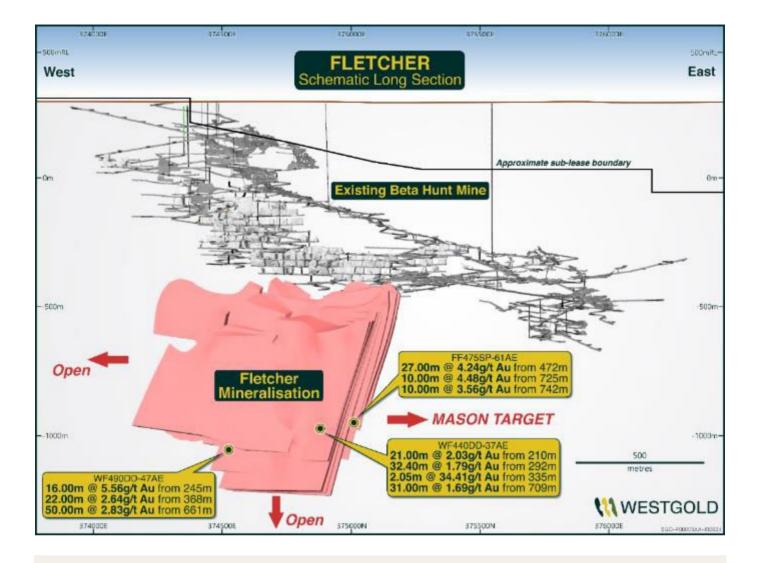


Figure 10: Fletcher schematic long-section: select drill results returned during Q4 FY25

Whilst the Fletcher MRE was the highlight of Resources Definition activities at Beta Hunt this quarter, the most spectacular Resource Definition drilling results received during the reporting period have been from the production mainstay Western Flanks area.

Western Flanks is one of two main production zones and currently the major driver of mine output at Beta Hunt. Results such as those received this quarter will ensure that Western Flanks remains integral to the success of Beta Hunt well into the future.

- 8.03m at 101.72g/t Au from 8.00m in AWLINKDD-15AG;
- 55.50m at 4.51g/t Au from 179.00m in AWLINKDD-24AG; and
- 6.90m at 372.32g/t Au from 8.00m in WWSP4-31AG.

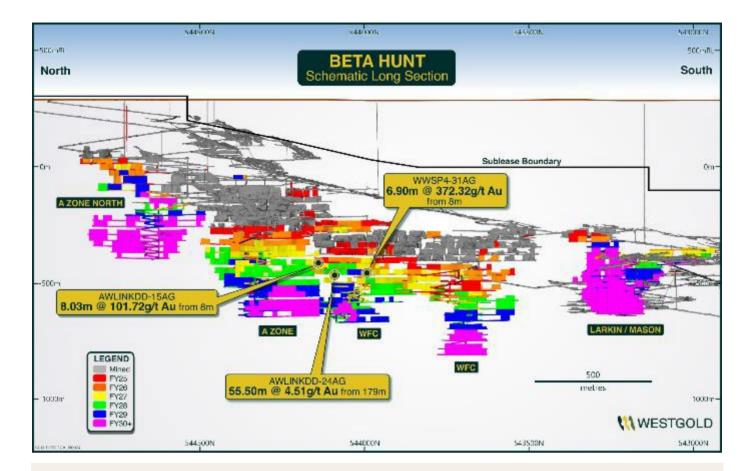


Figure 11: Beta Hunt FY25 Life of Mine plan schematic long-section: select drill results returned in Q4 FY25

Additionally, A Zone and Cowcill have continued to see significant drilling effort this quarter in keeping with Westgold's strategy to develop independent production zones which complement the current mine plan, and take advantage of existing capital infrastructure.

Whilst A Zone is already a key constituent of the Beta Hunt mine plan, lifting the contribution from A Zone and integrating deposits such as Cowcill will significantly de-risk Westgold's plans to lift outputs at Beta Hunt.

Higginsville

At Higginsville, Westgold is continuing to have success at its small-scale Two Boys mine, with ongoing drilling defining a clear high-grade trend within the broader Two Boys system as demonstrated by recent results such as:

- 3.00m at 4.1g/t Au from 61.00m in 25TBDDG007;
- 1.00m at 10.8g/t Au from 79.00m in 25TBDDG008; and
- 1.60m at 11.1g/t Au from 133.00m in 25TBDDG021.

This definition directs Westgold to focus mining efforts within the highest value part of the orebody, which inturn has ensured Two Boys has consistently generated free cash flow month-on-month under Westgold management.

The current Two Boys mine plan has development continuing to advance to the north, creating a drilling horizon from Two Boys to target opportunities at the Poseidon South zone of the 1.2Moz Trident Mine.

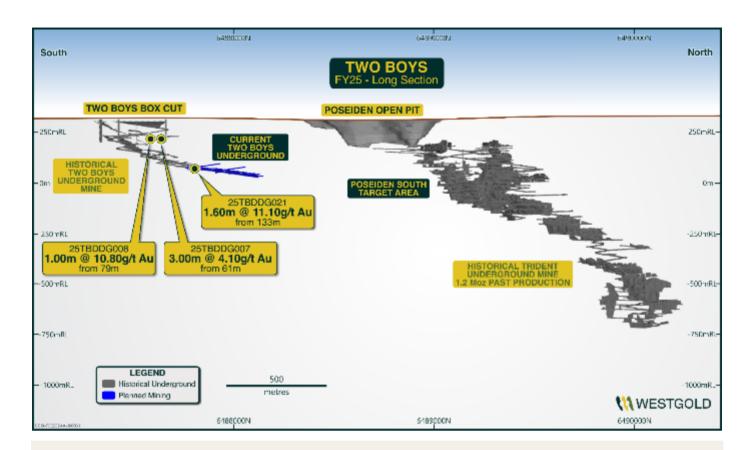


Figure 12: Two Boys schematic long-section: select drill results returned in Q4 FY25

Greenfields Exploration Activities

Greenfields exploration activities in the Southern Goldfields included ongoing target assessment and drill program design, heritage survey planning and the completion of the Spargo's RC drilling program.

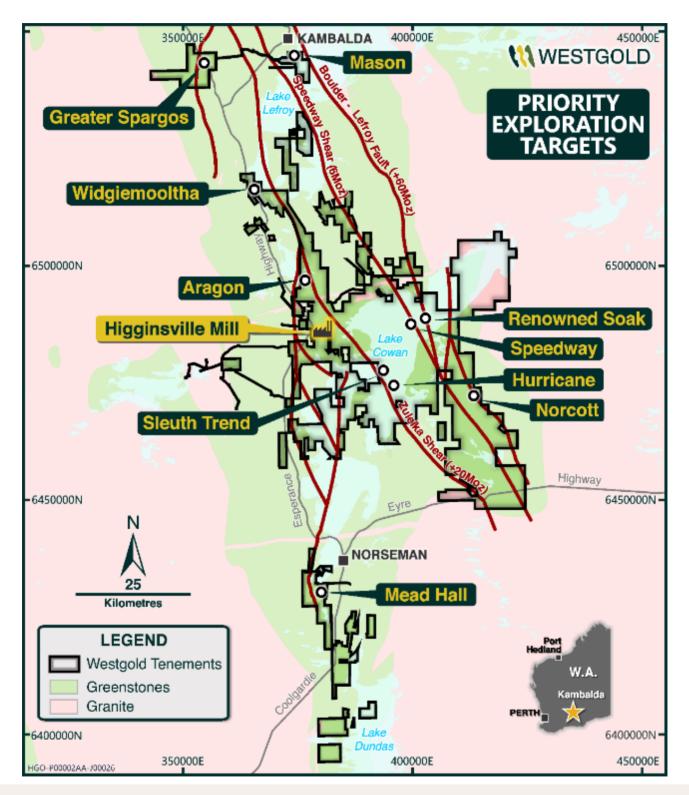


Figure 13: Southern Goldfields priority Greenfields exploration targets for CY25

Higginsville - Greater Spargo's RC Drill Program Results

During the quarter an RC drill program was undertaken testing two targets in the Greater Spargo's area with a total of 19 holes for 2,454m completed. The program targeted a RAB anomaly and an area of elevated pathfinder elements in association with a sheared stratigraphic contact. Assay results from this program did not warrant further investigation, and no further work is currently planned for this anomaly.

Beta Hunt - Mason Target

As detailed in the Q3 Quarterly Report, the Mason target is considered to be the fault-offset extension of Fletcher to the south of the Alpha Island Fault (refer Figure 9 above).

Preparation for the Mason Target UG drill program was completed in the quarter with work planned to commence early in Q1 FY26. This drill program has increased prospectivity given the results of the maiden Fletcher MRE outlined above.

Compliance Statements

Exploration Targets, Exploration Results, Mineral Resources and Ore Reserves

The information in this report that relates to Mineral Resources is compiled by Westgold technical employees and contractors under the supervision of the General Manager of Technical Services, Mr. Jake Russell B.Sc. (Hons), who is a member of the Australian Institute of Geoscientists and who has verified, reviewed, and approved such information. Mr Russell is a full-time employee to the Company and has sufficient experience which is relevant to the styles of mineralisation and types of deposit under consideration and to the activities which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (the "JORC Code") and as a Qualified Person as defined in the CIM Guidelines and National Instrument 43-101 – Standards of Disclosure for Mineral Projects ("NI 43-101"). Mr. Russell is an employee of the Company and, accordingly, is not independent for purposes of NI 43-101. Mr Russell consents to and approves the inclusion in this report of the matters based on his information in the form and context in which it appears. Mr Russell is eligible to participate in short- and long-term incentive plans of the Company.

The information in this report that relates to Ore Reserve Estimates is based on information compiled by Mr. Leigh Devlin, B. Eng MAusIMM, who has verified, reviewed and approved such information. Mr. Devlin has sufficient experience which is relevant to the styles of mineralisation and types of deposit under consideration and to the activities which they are undertaking to qualify as a Competent Person as defined in the JORC Code and as a Qualified Person as defined in the CIM Guidelines and NI 43-101. Mr. Devlin is an employee of the Company and, accordingly, is not independent for purposes of NI 43-101. Mr. Devlin consents to and approves the inclusion in this report of the matters based on his information in the form and context in which it appears. Mr. Devlin is a full time senior executive of the Company and is eligible to, and may participate in short-term and long-term incentive plans of the Company as disclosed in its annual reports and disclosure documents.

The information in this report that relates to Exploration Targets and Results is compiled by the Westgold Exploration Team under the supervision of Chief Growth Officer, Mr. Simon Rigby B.Sc. (Hons), who is a member of the Australian Institute of Geoscientists and who has verified, reviewed, and approved such information. Mr Rigby is a full-time employee of the Company and has sufficient experience which is relevant to the styles of mineralisation and types of deposit under consideration and to the activities which he is undertaking to qualify as a Competent Person as defined in the JORC Code and as a Qualified Person as defined in the CIM Guidelines and NI 43-101. Mr. Rigby is an employee of the Company and, accordingly, is not independent for purposes of NI 43-101. Mr Rigby consents to and approves the inclusion in this report of the matters based on his information in the form and context in which it appears. Mr Rigby is eligible to participate in short-term and long-term incentive plans of the Company.

Mineral Resources, Ore Reserve Estimates and Exploration Targets and Results are calculated in accordance with the JORC Code. Investors outside Australia should note that while Ore Reserve and Mineral Resource estimates of the Company in this report comply with the JORC Code (such JORC Code-compliant Ore Reserves and Mineral Resources being "Ore Reserves" and "Mineral Resources" respectively), they may not comply with the relevant guidelines in other countries. The JORC Code is an acceptable foreign code under NI 43-101. Information contained in this announcement describing mineral deposits may not be comparable to similar information made public by companies subject to the reporting and disclosure requirements of US securities laws, including Item 1300 of Regulation S-K. All technical and scientific information in this release has been prepared in accordance with the Canadian regulatory requirements set out in NI 43-101 and has been reviewed on behalf of the Company by Qualified Persons, as set forth above.

This report contains references to estimates of Mineral Resources and Ore Reserves. The estimation of Mineral Resources is inherently uncertain and involves subjective judgments about many relevant factors. Mineral Resources that are not Ore Reserves do not have demonstrated economic viability. The accuracy of any such estimates is a function of the quantity and quality of available data, and of the assumptions made and judgments used in engineering and geological interpretation, which may prove to be unreliable and depend, to a certain extent, upon the analysis of drilling results and statistical inferences that may ultimately prove to be inaccurate. Mineral Resource estimates may require re-estimation based on, among other things: (i) fluctuations in the price of gold; (ii) results of drilling; (iii) results of metallurgical testing, process and other studies; (iv) changes to proposed mine plans; (v) the evaluation of mine plans subsequent to the date of any estimates; and (vi) the possible failure to receive required permits, approvals and licenses.

Technical reports

NI 43-101 compliant technical reports for each of Fortnum, Meekatharra, Cue, Beta Hunt and Higginsville operations are available under the Company's SEDAR+ profile at www.sedarplus.ca and the Company's website at www.westgold.com.au.

Forward Looking Statements

These materials prepared by Westgold Resources Limited (or the "Company") include forward looking statements. Often, but not always, forward looking statements can generally be identified by the use of forward looking words such as "may", "will", "expect", "intend", "believe", "forecast", "predict", "plan", "estimate", "anticipate", "continue", and "guidance", or other similar words and may include, without limitation, statements regarding plans, strategies and objectives of management, anticipated production or construction commencement dates and expected costs or production outputs.

Forward looking statements inherently involve known and unknown risks, uncertainties and other factors that may cause the Company's actual results, performance, and achievements to differ materially from any future results, performance, or achievements. Relevant factors may include, but are not limited to, changes in commodity prices, foreign exchange fluctuations and general economic conditions, increased costs and demand for production inputs, the speculative nature of exploration and project development, including the risks of obtaining necessary licenses and permits and diminishing quantities or grades of reserves, political and social risks, changes to the regulatory framework within which the Company operates or may in the future operate, environmental conditions including extreme weather conditions, recruitment and retention of personnel, industrial relations issues and litigation.

Forward looking statements are based on the Company and its management's good faith assumptions relating to the financial, market, regulatory and other relevant environments that will exist and affect the Company's business and operations in the future. The Company does not give any assurance that the assumptions on which forward looking statements are based will prove to be correct, or that the Company's business or operations will not be affected in any material manner by these or other factors not foreseen or foreseeable by the Company or management or beyond the Company's control.

Although the Company attempts and has attempted to identify factors that would cause actual actions, events or results to differ materially from those disclosed in forward looking statements, there may be other factors that could cause actual results, performance, achievements or events not to be as anticipated, estimated or intended, and many events are beyond the reasonable control of the Company. In addition, the Company's actual results could differ materially from those anticipated in these forward looking statements as a result of the factors outlined in the "Risk Factors" section of the Company's continuous disclosure filings available on SEDAR+ or the ASX, including, in the company's current annual report, half year report or most recent management discussion and analysis.

Accordingly, readers are cautioned not to place undue reliance on forward looking statements. Forward looking statements in these materials speak only at the date of issue. Subject to any continuing obligations under applicable law or any relevant stock exchange listing rules, in providing this information the Company does not undertake any obligation to publicly update or revise any of the forward-looking statements or to advise of any change in events, conditions or circumstances.

This announcement is authorised for release to the ASX by the Board.

Investor and media relations enquiries

Investor Relations
Kasun Liyanaarachchi
Group Manager Investor Relations & Communications
investor.relations@westgold.com.au
+61 458 564 483

Media
Annette Ellis
Manager Communications & Corporate Affairs
Media@westgold.com.au
+61 458 200 039

Appendix A - Q3 FY25 Drill Intersections Not Previously Reported SOUTHERN GOLDFIELDS

All widths are downhole. Coordinates are collar. Grid is MGA 1994 Zone 51 Significant = >5g/m for resources.

Lode	Hole	Collar N	Collar E	Collar RL	Intercept (Downhole)	From (m)	Dip	Azi	Total Length
	1,000		Janus	Julia IIE	martipe (20mmote)		٦.,٦		(m)
Beta Hunt A Zone	AA310SP-031AG	6,544,486	374,596	-306	10.00m at 1.70g/t Au	86	-31	21	162
A ZOITE	AA310SP-031AG	6,544,486	374,596	-306	9.10m at 2.14g/t Au	76	-29	49	123
	AA310SP-032AG	6,544,486	374,596	-306	11.00m at 1.24g/t Au	99	-29	23	182
	AA310SP-034AG	6,544,486	374,596	-306	NSI	33	-38.01	30	144
	AA310SP-035AG	6,544,486	374,596	-306	2.25m at 4.14g/t Au	89	-38.01	44	132
	AA310SP-035AG	6,544,486	374,596	-306	13.57m at 1.64g/t Au	100	-51	41	171
	AA310SP-037AG	6,544,486	374,596	-306	11.99m at 1.78g/t Au	86	-45	54	158
	AA3103F-037AG	0,344,460	374,390	-300	7.06m at 1.99g/t Au	103	-43	54	130
	AA310SP-038AG	6,544,486	374,596	-306	13.50m at 1.72g/t Au	103	-51	56	171
	AA310SP-039AG	6,544,483	374,600	-306	11.00m at 1.38g/t Au	112	-49	67	171
	AA310SP-040AG	6,544,483	374,600	-306	6.00m at 1.35g/t Au	92	-37	73	140
	AA31001 -040A0	0,544,405	374,000	-300	14.00m at 4.46g/t Au	103	-57	/5	140
	AA310SP-041AG	6,544,483	374,600	-306	18.40m at 2.81g/t Au	105	-43	77	156
	AA310SP-041AG	6,544,483	374,600	-306	NSI	103	-47.54	79	177
	AA310SP-042AG	6,544,483	374,600	-306	3.00m at 3.88g/t Au	93	-47.34	80	138
	AA3103F-043AG	6,544,463	374,600	-300	11.29m at 1.95g/t Au	99	-20	80	130
	AA310SP-044AG	6,544,483	374,600	-306	3.00m at 9.35g/t Au	115	-40	86	180
	AA3103F-044AG	0,344,463	374,600	-300	14.00m at 2.79g/t Au	121	-40	86	100
	AA310SP-045AG	6,544,483	374,600	-306	12.00m at 2.18g/t Au	108	-26	88	162
	AA3103F-043AG	0,344,463	374,600	-300	6.33m at 1.50g/t Au	123	-26	00	102
	AA310SP-046AG	6,544,483	374,600	-306	6.00m at 3.42g/t Au	118	-33	90	170
	AA3103F-040AG	0,344,463	374,600	-300	8.60m at 1.82g/t Au	131	-33	90	170
	AA310SP-18AR	6,544,481	374,600	-306	9.00m at 1.87g/t Au	200	-23	107	250
	AASTUSE-TOAN	0,544,461	374,600	-300	9.00m at 1.24g/t Au	212	-23	107	250
	AA310SP-19AR	6,544,481	374,600	-306	7.00m at 2.11g/t Au	165	-30	107	252
	AASTOSF-TSAN	0,344,461	374,000	-300	19.00m at 2.40g/t Au	206	-30	107	232
	AA310SP-20AR	6,544,481	374,600	-306	2.55m at 2.84g/t Au	131	-29	98	223
	AA01001 -20A11	0,344,401	374,000	-300	4.00m at 1.39g/t Au	145	-23	30	223
					33.50m at 0.96g/t Au	157			
					4.20m at 1.67g/t Au	195			
					6.00m at 1.10g/t Au	211			
	AA310SP-21AR	6,544,484	374,600	-306	22.10m at 2.13g/t Au	78	-30	68	131
	AA310SP-22AR	6,544,484	374,600	-307	20.00m at 1.59g/t Au	94	-42	65	137
	AA310SP-23AR	6,544,484	374,600	-307	10.80m at 1.12g/t Au	112	-54	66	167
	AA310SP-24AR	6,544,484	374,599	-306	7.00m at 1.33g/t Au	81	-31	32	117
	AA310SP-25AR	6,544,484	374,599	-307	9.00m at 1.16g/t Au	92	-45	33	129
	AA310SP-26AR	6,544,484	374,599	-307	7.90m at 1.25g/t Au	99	-54	28	186
	AASTOSF-ZOAR	0,344,464	374,333	-307	3.12m at 3.40g/t Au	111	-54	20	100
	AA310SP-27AR	6,544,485	374,599	-307	8.55m at 2.49g/t Au	104	-38	8	164.96
	AA310SP-28AR	6,544,485	374,599	-307	16.32m at 4.06g/t Au	104	-47	1	188.66
	AA310SP-28AR AA310SP-29AR	6,544,485	374,699	-307	12.00m at 3.26g/t Au	146	-47	100	204
	AAS IUSE-28AN	0,044,402	374,000	-300	2.00m at 2.84g/t Au	170	-30	100	204
	AA310SP-30AR	6,544,482	374,600	-306	4.00m at 2.10g/t Au	170	-45	87	210
	AA310SP-30AR AA310SP-47AR	6,544,484	374,500	-306	26.05m at 1.57g/t Au	139	-45 -66	24	210 309
	AA310SP-48AR	6,544,481	374,600	-307	3.00m at 4.36g/t Au	138	-63	78	309
	AA3 103F-40AR	0,344,401	374,000	-307		138	-03	/0	306
			-		6.00m at 3.25g/t Au 21.00m at 2.15g/t Au	189			
	AA310SP-50AR	6,544,485	374,598	-307	9.00m at 1.36g/t Au	193	-68	1	330
	AAS TOSE-SUAN	0,344,465	374,396	-307	3.50m at 2.06g/t Au	216	-00		330
					5.50m at 2.33g/t Au				
					5.50m at 2.33g/t Au	222			

Lode	Hole	Collar N	Collar E	Collar RL	Intercept (Downhole)	From (m)	Dip	Azi	Total Length (m)
					5.00m at 6.20g/t Au	242			
					3.00m at 5.66g/t Au	251			
	AA310SP-51AR	6,544,482	374,599	-307	5.00m at 1.87g/t Au	171	-74	53	366
	AA310SP-52AR	6,544,481	374,600	-307	5.00m at 3.05g/t Au	172	-65	94	382
					7.30m at 0.96g/t Au	279			
	AA325SP-10AR	6,544,553	374,492	-322	8.00m at 3.67g/t Au	191	-68	43	271
					5.30m at 2.11g/t Au	205			
					3.00m at 6.26g/t Au	229			
	AA325SP-12AR	6,544,553	374,492	-322	NSI		-64	99	373
	AA325SP-13AR	6,544,553	374,492	-322	28.00m at 1.67g/t Au	123	-74	71	344
	AA325SP-14AR	6,544,553	374,492	-322	16.00m at 1.64g/t Au	130	-74	9	337
					33.00m at 2.17g/t Au	293			
	AAP13DD-05AR	6,545,063	374,100	21	NSI		-56	170	240
	AASP22-85AG	6,544,544	374,502	-266	2.00m at 6.57g/t Au	10	-21	353	171
					5.40m at 1.96g/t Au	122			
	AASP22-86AG	6,544,544	374,502	-266	NSI		-15	346	176
	AASP22-87AG	6,544,545	374,501	-266	NSI		-17	339	241
·	AASP22-88AG	6,544,544	374,502	-266	18.00m at 1.86g/t Au	128	-28	352	179
	AASP22-89AG	6,544,544	374,502	-266	22.60m at 2.86g/t Au	134	-34	352	184
	AASP22-90AG	6,544,544	374,502	-266	21.41m at 3.65g/t Au	146	-31	344	197
	AASP22-92AG	6,544,543	374,503	-266	17.00m at 2.08g/t Au	140	-47	5	192
	AASP22-93AG	6,544,544	374,502	-266	8.00m at 1.87g/t Au	148	-44	353	191
					4.00m at 4.44g/t Au	159			
	AASP22-94AG	6,544,544	374,502	-266	8.00m at 2.65g/t Au	159	-40	344	197
	AASP325-01AR	6,544,556	374,496	-321	14.00m at 2.68g/t Au	123	-40	67	195
	AASP325-02AR	6,544,555	374,495	-321	2.45m at 2.20g/t Au	178	-53	63	185
	AASP325-03AR	6,544,555	374,495	-321	6.00m at 4.00g/t Au	116	-54	34	197
					3.45m at 1.98g/t Au	132			
	AASP325-04AR	6,544,555	374,495	-321	NSI		-40	8	164
	AASP325-05AR	6,544,555	374,495	-321	27.44m at 2.74g/t Au	119	-51	8	206
	AASP325-06AR	6,544,555	374,495	-321	9.00m at 1.31g/t Au	137	-44	349	194
	AASP325-07AR	6,544,557	374,491	-321	NSI		-22	346	183
	AASP325-09AR	6,544,557	374,491	-321	25.00m at 2.89g/t Au	139	-25	339	297
					12.00m at 0.82g/t Au	265			
					3.00m at 1.91g/t Au	283			
Cowcill	LCLKNINC-01AR	6,543,075	375,384	-374	5.00m at 2.24g/t Au	116	17	8	203
	LCLKNINC-02AR	6,543,074	375,384	-375	20.00m at 1.22g/t Au	111	0	8	189
	LCLKNINC-05AR	6,543,074	375,384	-375	6.00m at 2.28g/t Au	91	-1	23	237
					11.10m at 1.50g/t Au	203			
	LCLKNINC-06AR	6,543,069	375,387	-374	4.00m at 2.19g/t Au	90	23	43	134
	LCLKNINC-07AR	6,543,069	375,387	-375	3.85m at 2.36g/t Au	77	-1	43	183
					4.00m at 5.25g/t Au	135			
	LCLKNINC-08AR	6,543,069	375,387	-376	3.00m at 5.76g/t Au	41	-22	43	201
					8.00m at 1.89g/t Au	139			
					2.00m at 5.50g/t Au	191			
	LCLKNINC-09AR	6,543,069	375,388	-374	6.55m at 1.27g/t Au	115	22	67	126
	LCLKNINC-10AR	6,543,069	375,387	-375	7.00m at 1.48g/t Au	75	-1	67	188
	LCLKNINC-11AR	6,543,069	375,387	-376	NSI		-22	67	171
	LCLKNINC-12AR	6,543,069	375,387	-374	5.38m at 1.55g/t Au	33	19	86	128
					12.00m at 1.15g/t Au	98			
	LCLKNINC-13AR	6,543,069	375,387	-375	3.63m at 2.14g/t Au	91	0	86	176
	LCLKNINC-14AR	6,543,069	375,387	-376	NSI		-19	86	174
	LCLKNINC-15AR	6,543,068	375,387	-374	NSI		34	54	160
Fletcher	EFDDSP1-50AE- W1	6,543,700	375,633	-502	2.00m at 5.70g/t Au	728	-33	230	846
	FF475SP-61AEA	6,543,694	375,042	-473	5.00m at 1.24g/t Au	101	-55	235	906
					8.40m at 1.43g/t Au	127			

Lode	Hole	Collar N	Collar E	Collar RL	Intercept (Downhole)	From (m)	Dip	Azi	Total Length (m)
					20.00m at 1.25g/t Au	159			
					39.00m at 1.33g/t Au	232			
					27.00m at 4.24g/t Au	472			
					13.00m at 1.58g/t Au	629			
					30.00m at 2.03g/t Au	657			
					6.00m at 1.76g/t Au	713			
					10.00m at 4.48g/t Au	725			
					10.00m at 3.56g/t Au	742			
					9.00m at 1.45g/t Au	767			
					2.38m at 1.47g/t Au	779			
					14.00m at 1.90g/t Au	801			
	FF475SP-64AE	6,543,693	375,042	-474	5.00m at 1.82g/t Au	259	-37	206	891
					4.00m at 1.37g/t Au	420			
					8.00m at 3.78g/t Au	535			
					2.00m at 10.51g/t Au	568			
	WF440DD-36AE	6,543,647	375,059	-433	2.00m at 4.75g/t Au	189	-40	200	666
					5.00m at 1.94g/t Au	235			
					15.00m at 1.51g/t Au	246			
					24.00m at 1.48g/t Au	271			
					13.00m at 2.43g/t Au	325			
					7.00m at 1.20g/t Au	421			
					17.00m at 1.03g/t Au	534			
	WF440DD-37AE	6,543,647	375,059	-433	5.00m at 2.61g/t Au	146	-47	190	852
	WI 440DD-37AL	0,343,047	373,033	-400	21.00m at 2.03g/t Au	210	-47	130	
					8.00m at 1.75g/t Au	237			
					8.00m at 2.70g/t Au	270			
					32.40m at 1.79g/t Au	292			
					2.05m at 34.41g/t Au	335			
					6.00m at 2.05g/t Au	341			
					, and the second				
	WE440DD 004E	0.540.047	075.050	40.4	31.00m at 1.69g/t Au	709	40	000	
	WF440DD-38AE	6,543,647	375,058	-434	6.00m at 2.13g/t Au	150	-48	200	771
					3.00m at 2.46g/t Au	410			
	11/51/02/2007				4.00m at 5.41g/t Au	560			
	WF440DD-52AE	6,543,649	375,057	-433	6.62m at 2.51g/t Au	351	-13	195	527
	WF440DD-56AR	6,543,647	375,059	-433	NSI		-11	187	546
	WF440DD-57AR	6,543,647	375,059	-433	NSI		-16	204	588
	WF440VD-57AE	6,543,697	374,990	-437	4.00m at 1.52g/t Au	505	-34	278	879
					8.00m at 2.96g/t Au	621			
					3.50m at 2.31g/t Au	646			
					27.00m at 1.95g/t Au	664			
					9.00m at 5.31g/t Au	708			
					6.00m at 5.21g/t Au	730			
					10.60m at 2.95g/t Au	741			
					4.28m at 1.69g/t Au	818			
	WF440VD-59AE	6,543,677	375,016	-437	NSI		-16	204	542
	WF440VD-71AR	6,543,693	374,994	-438	2.00m at 2.65g/t Au	191	-23	228	474
					14.00m at 3.13g/t Au	197			
					3.00m at 7.14g/t Au	229			
	WF440VD-72AR	6,543,693	374,993	-438	6.00m at 8.18g/t Au	193	-18	239	456
	WF440VD-74AR	6,543,693	374,993	-438	9.00m at 4.01g/t Au	196	-28	240	573
					15.00m at 3.80g/t Au	231			
					18.00m at 2.42g/t Au	281			
					8.00m at 2.67g/t Au	306			
					3.25m at 1.71g/t Au	443			
					6.20m at 2.52g/t Au	451			
					3.00m at 1.68g/t Au	463			-
		+	1		9.00m at 6.51g/t Au	469			

Lode	Hole	Collar N	Collar E	Collar RL	Intercept (Downhole)	From (m)	Dip	Azi	Total Length (m)
					5.75m at 1.26g/t Au	496			
					5.00m at 2.46g/t Au	504			
					12.00m at 1.38g/t Au	512			
					7.00m at 1.43g/t Au	552			
	WF440VD-76AR	6,543,693	374,993	-438	NSI		-32	248	587
	WF490DD-47AE	6,543,672	374,950	-484	16.00m at 5.56g/t Au	245	-49	262	952
					7.00m at 1.59g/t Au	316			
					22.00m at 2.64g/t Au	368			
					8.00m at 1.10g/t Au	567			
					15.00m at 1.14g/t Au	624			
					9.00m at 2.53g/t Au	645			
					50.00m at 2.83g/t Au	661			
Western Flanks	AW310SP-11AG	544,416	374,576	-309	3.00m at 6.99g/t Au	90	-22	223	177
TTOOLOTTI LATING	7.1101001 117.0	044,410	074,070	000	10.99m at 3.03g/t Au	105		220	.,,
					17.53m at 3.58g/t Au	103			
	AW310SP-12AG	6 544 470	274 500	206	6.80m at 1.03g/t Au	88	20	214	216
	AVV3103P-12AG	6,544,479	374,596	-306			-28	214	216
					15.00m at 1.90g/t Au	117			
					5.20m at 3.43g/t Au	151			
	AW310SP-13AG	6,544,479	374,596	-306	7.00m at 3.17g/t Au	92	-20	212	177
					9.00m at 1.78g/t Au	108			
					7.00m at 1.38g/t Au	124			
					6.00m at 8.25g/t Au	135			
					6.00m at 2.12g/t Au	145			
	AW310SP-14AG	6,544,479	374,596	-306	5.00m at 1.24g/t Au	98	-16	203	180
					6.00m at 2.31g/t Au	135			
					3.00m at 2.15g/t Au	156			
	AW310SP-15AG	6,544,479	374,596	-306	3.70m at 2.77g/t Au	102	-22	197	204
					17.60m at 2.18g/t Au	128			
					12.00m at 1.51g/t Au	155			
					15.00m at 1.98g/t Au	171			
	AW310SP-16AG	6,544,479	374,596	-306	4.00m at 2.83g/t Au	102	-30	193	267
	AVV01001-10A0	0,544,475	374,330	-300	9.00m at 1.28g/t Au	172	-30	100	207
					3.40m at 2.92g/t Au	211			
	AW310SP-17AG	0.544.470	274 500	200	J		10	100	242
	AVV3105P-17AG	6,544,479	374,596	-306	4.64m at 1.79g/t Au	112	-16	189	243
					22.15m at 1.19g/t Au	163			
	AW310SP-18AG	6,544,479	374,596	-306	5.00m at 1.44g/t Au	106	-23	189	240
					4.00m at 1.49g/t Au	149			
					9.30m at 1.79g/t Au	156			
					18.00m at 1.57g/t Au	172			
					14.40m at 1.39g/t Au	216			
	AW310SP-19AG	6,544,479	374,596	-306	11.51m at 1.63g/t Au	162	-32	188	250
					9.00m at 1.92g/t Au	186			
					3.00m at 1.87g/t Au	199			
		1			11.93m at 0.83g/t Au	207			
		1			2.42m at 4.46g/t Au	222			
	AW325SP-02AG	6,544,551	374,491	-322	4.00m at 1.32g/t Au	66	-36	225	204
		-,,	2,	522	7.26m at 4.34g/t Au	79			
					23.00m at 1.96g/t Au	121			
		+			2.75m at 3.17g/t Au	159			
	AM2255D 0240	6 5 4 4 5 5 1	274 404	200			27	245	100
	AW325SP-03AG	6,544,551	374,491	-322	14.00m at 1.61g/t Au	65	-37	245	192
	A14/00=05 5 :: 5		07		8.00m at 11.02g/t Au	132		6-	
	AW325SP-04AG	6,544,549	374,491	-322	10.00m at 1.89g/t Au	74	-35	254	237
		1			13.00m at 18.18g/t Au	124			
					23.00m at 1.52g/t Au	202			
					2.00m at 7.39g/t Au	233			
	AW325SP-05AG	6,544,551	374,491	-322	4.22m at 2.68g/t Au	71	-30	256	186
					6.00m at 1.68g/t Au	112			

Lode	Hole	Collar N	Collar E	Collar RL	Intercept (Downhole)	From (m)	Dip	Azi	Total Length (m)
	AW325SP-06AG	6,544,551	374,491	-322	5.67m at 3.79g/t Au	68	-41	233	174
					5.00m at 4.72g/t Au	83			
					11.00m at 1.30g/t Au	139			
	AWLINKDD-12AG	6,544,333	374,724	-286	2.93m at 2.49g/t Au	110	-31	261	242
					7.90m at 1.70g/t Au	185			
					2.00m at 2.78g/t Au	201			
					3.81m at 1.53g/t Au	215			
	AWLINKDD-13AG	6,544,333	374,724	-286	11.00m at 1.51g/t Au	153	-25	259	165
	AWLINKDD-14AG	6,544,333	374,724	-286	2.00m at 6.79g/t Au	120	-40	257	200
					5.00m at 2.11g/t Au	165			
					8.00m at 1.93g/t Au	179			
	AWLINKDD-15AG	6,544,333	374,724	-286	8.03m at 101.72g/t Au	8	-34	255	180
			·		6.20m at 1.24g/t Au	110			
					7.26m at 1.53g/t Au	156			
					11.25m at 2.09g/t Au	166			
	AWLINKDD-16AG	6,544,333	374,724	-286	6.00m at 4.13g/t Au	8	-40	250	205
	AWLINKDD-17AG			-286	,	99	-33	248	236
	AVVLINKDD-17AG	6,544,333	374,724	-200	2.00m at 4.02g/t Au		-აა	240	236
					13.00m at 1.59g/t Au	132			
					2.00m at 7.31g/t Au	163			
					13.00m at 1.89g/t Au	176			
					5.00m at 3.11g/t Au	218			
	AWLINKDD-18AG	6,544,333	374,724	-286	4.00m at 4.80g/t Au	91	-29	242	171
					14.15m at 2.50g/t Au	120			
	AWLINKDD-19AG	6,544,333	374,724	-286	3.13m at 8.42g/t Au	110	-36	241	191
					10.78m at 1.76g/t Au	132			
					5.00m at 2.93g/t Au	159			
					16.82m at 1.21g/t Au	166			
					4.00m at 1.40g/t Au	186			
	AWLINKDD-20AG	6,544,333	374,724	-286	21.00m at 2.17g/t Au	161	-44	236	237
					13.00m at 3.39g/t Au	198			
					14.75m at 8.71g/t Au	214			
	AWLINKDD-21AG	6,544,333	374,724	-286	2.00m at 4.95g/t Au	116	-39	233	200
	711121111125 2 1710	3,0 : :,000	07.1,721	200	2.00m at 5.48g/t Au	163		200	
					19.00m at 2.30g/t Au	170			
	AWLINKDD-22AG	6,544,333	374,724	-286	7.00m at 1.40g/t Au	155	-34	227	207
	AVVLINKDD-22AG	6,544,555	3/4,/24	-200	9		-34	227	207
	AVA# INUKDD 0040	0.544.000	074704	200	7.35m at 1.46g/t Au	176	- 44	000	252
	AWLINKDD-23AG	6,544,333	374,724	-286	11.00m at 2.01g/t Au	155	-41	226	250
					16.00m at 5.61g/t Au	171			
	AWLINKDD-23AGA	6,544,333	374,724	-286	10.00m at 2.62g/t Au	150	-42	226	252
					26.00m at 3.21g/t Au	171			
					21.00m at 3.82g/t Au	205			
	AWLINKDD-24AG	6,544,333	374,722	-286	8.00m at 5.05g/t Au	138	-45	219	282
					13.00m at 1.93g/t Au	162			
					55.50m at 4.51g/t Au	179			
	AWLINKDD-25AG	6,544,333	374,724	-286	14.00m at 2.12g/t Au	153	-40	215	270
					11.00m at 4.85g/t Au	170			
					6.00m at 1.86g/t Au	189			
					15.00m at 5.74g/t Au	208			
					7.00m at 3.72g/t Au	236			
	AWLINKDD-26AG	6,544,333	374,724	-286	10.00m at 1.68g/t Au	139	-29	214	210
	AVVLININDD-20AG	0,044,000	574,724	-200	17.00m at 3.58g/t Au	174	-23	414	210
	AVAITATED 0740	6 544 333	274 704	200			20	212	005
	AWLINKDD-27AG	6,544,333	374,724	-286	14.30m at 2.15g/t Au	13	-36	213	225
					13.00m at 3.15g/t Au	140			
					4.00m at 58.44g/t Au	156			
	AWLINKDD-28AR	6,544,333	374,725	-287	8.50m at 2.07g/t Au	172	-56	224	405
					2.00m at 5.37g/t Au	197			
	WW475SP-01AG	6,543,871	375,125	-470	17.00m at 3.59g/t Au	95	-1	249	177

Lode	Hole	Collar N	Collar E	Collar RL	Intercept (Downhole)	From (m)	Dip	Azi	Total Length (m)
					22.00m at 2.50g/t Au	139			()
	WW475SP-02AG	6,543,871	375,125	-470	4.35m at 1.39g/t Au	18	0	233	192
					5.80m at 1.66g/t Au	125			
	WW475SP-03AG	6,543,871	375,125	-470	NSI		0	215	147
	WW475SP-04AG	6,543,872	375,124	-470	9.00m at 1.11g/t Au	25	-11	273	285
					4.25m at 2.35g/t Au	186			
					4.50m at 1.95g/t Au	193			
	WW475SP-05AG	6,543,872	375,124	-471	9.92m at 1.73g/t Au	130	-9	268	228
					9.92m at 1.73g/t Au	130			
					7.43m at 2.32g/t Au	179			
					7.43m at 2.32g/t Au	179			
	WW475SP-06AG	6,543,872	375,124	-471	20.00m at 1.28g/t Au	12	-13	262	204
			,		17.00m at 2.64g/t Au	102			
					18.37m at 4.91g/t Au	149			
	WW475SP-07AG	6,543,872	375,124	-471	13.73m at 2.74g/t Au	13	-13	255	174
		3,0 10,072	070,121	.,.	5.00m at 2.03g/t Au	79			.,,
					11.36m at 2.21g/t Au	91			
					19.00m at 2.22g/t Au	144			
	WW475SP-08AG	6,543,871	375,125	-470	4.00m at 1.30g/t Au	42	-14	223	159
	WW47331 -00A0	0,343,071	373,123	-470	9.00m at 1.80g/t Au	87	-14	223	100
	WW475SP-11AR	6,543,871	375,124	-471	4.45m at 1.58g/t Au	24	-40	223	293
	WW475SP-11AR		375,124	-471	3.10m at 2.06g/t Au	29	-44	230	252
		6,543,871	·		_				
	WW485SP-14AR	6,543,796	375,195	-485	10.60m at 1.03g/t Au	12	-43	247	281
	WW485SP-15AR	6,543,796	375,195	-485	NSI	450	-38	244	243
	WW485SP-16AR	6,543,796	375,195	-485	18.00m at 3.38g/t Au	159	-36	226	216
	WWSP4-29AG	6,544,074	374,942	-398	15.20m at 1.96g/t Au	90	-34	253	260.5
					9.95m at 4.00g/t Au	157			
	WWSP4-30AG	6,544,074	374,942	-398	13.00m at 1.70g/t Au	95	-38	252	260.6
					8.00m at 1.21g/t Au	112			
					18.15m at 1.28g/t Au	137			
					25.80m at 1.78g/t Au	157			
	WWSP4-31AG	6,544,074	374,942	-398	6.90m at 372.32g/t Au	8	-36	248	282
					5.10m at 4.05g/t Au	89			
					9.35m at 3.55g/t Au	97			
					11.00m at 2.53g/t Au	159			
	WWSP4-32AG	6,544,074	374,942	-398	12.00m at 5.13g/t Au	86	-38	243	261
					4.00m at 2.98g/t Au	134			
					11.15m at 1.80g/t Au	154			
	WWSP4-33AG	6,544,074	374,942	-398	7.55m at 2.88g/t Au	90	-43	235	258
					2.00m at 5.88g/t Au	130			
					27.00m at 3.28g/t Au	149			
	WWSP4-34AG	6,544,073	374,943	-396	3.50m at 3.24g/t Au	123	-42	228	267
					18.70m at 2.76g/t Au	146			
	WWSP6-15AG	6,544,183	374,876	-418	2.00m at 4.08g/t Au	117	9	252	194
					6.45m at 2.17g/t Au	132			
					8.90m at 3.49g/t Au	140			
					6.00m at 3.05g/t Au	155			
	WWSP6-16AG	6,544,184	374,876	-418	2.00m at 5.66g/t Au	136	7	272	227
		'			3.00m at 11.85g/t Au	158			
	WWSP6-17AG	6,544,184	374,876	-418	6.00m at 2.97g/t Au	133	7	278	281
		,. ,	,,,,		24.00m at 5.27g/t Au	170	-	-	
					21.00m at 1.40g/t Au	199			
		+			13.00m at 2.21g/t Au	223			
		+			8.00m at 2.52g/t Au	263			

Lode	Hole	Collar N	Collar E	Collar RL	Intercept (Downhole)	From (m)	Dip	Azi	Total Length (m)
Two Boys									
Two Boys	25TB096DDG23	6,487,915	379,577	90	NSI		-12	247	125.63
	25TBDDG003	6,487,655	379,299	262	1.3m at 6.7g/t Au	60	-30	264	83.5
	25TBDDG004	6,487,656	379,300	262	0.3m at 11.4g/t Au	71	-7	238	107.6
					1m at 1.9g/t Au	79			
	25TBDDG007	6,487,655	379,299	263	3m at 4.1g/t Au	61	-3	237	86.9
					0.7m at 1.3g/t Au	61			
	25TBDDG008	6,487,656	379,300	262	1m at 10.8g/t Au	79	-51	271	98.9
	25TBDDG009	6,487,655	379,299	262	NSI		-6	210	69.03
	25TBDDG010A	6,487,655	379,299	263	NSI		-5	221	80.8
	25TBDDG013	6,487,655	379,299	262	NSI		-2	208	100.2
	25TBDDG020	6,487,908	379,556	92	1.3m at 1.2g/t Au	152	-29	284	167.7
	25TBDDG021	6,487,908	379,556	92	1.6m at 11.1g/t Au	133	-25	311	152.74
	25TBDDG022	6,487,908	379,556	92	NSI		-30	309	149.6
	25TBDDG023	6,487,909	379,556	92	NSI		-39	324	143.5
	25TBDDG024	6,487,908	379,556	92	3m at 2.8g/t Au	115	-37	292	137.3
	25TBDDG025	6,487,910	379,556	92	NSI		-9	256	161.69
	25TBDDG026	6,487,910	379,556	92	NSI		-28	331	153
	25TBDDG027	6,487,910	379,556	92	NSI		-37	331	159.9
	25TBDDG029	6,487,910	379,556	92	NSI		-85	120	162.8

MURCHISON

All widths are downhole. Coordinates are collar. Grid is MGA 1994 Zone 50 for the Murchison. Significant = >5g/m for resources & >2g/m for greenfields exploration.

Lode	Hole	Collar N	Collar E	Collar RL	Intercept (Downhole)	From (m)	Dip	Azi	Total Length (m)
Big Bell									,
Big Bell	25BBDD0001	6,978,104	564,985	-5	NSI		29	121	27.5
	25BBDD0002	6,978,085	564,971	-4	3.45m at 2.12g/t Au	26	30	120	29
	25BBDD0003	6,978,073	564,964	-4	21.20m at 3.2g/t Au	19	33	140	42
	25BBDD0004	6,978,036	564,937	-6	NSI		33	120	27.35
	25BBDD0005	6,978,024	564,930	-6	NSI		33	132	26.2
	25BBDD0006	6,978,004	564,914	-6	NSI		30	120	28.2
	25BBDD0007	6,977,986	564,903	-6	4.90m at 1.82g/t Au	22	29	121	26.9
	25BBDD0008	6,977,973	564,889	-7	3.25m at 10.42g/t Au	26	31	121	28.98
	25BBDD0009	6,977,955	564,880	-6	NSI		33	121	22.97
	25BBDD0010	6,977,943	564,873	-6	5.76m at 2.08g/t Au	17	36	144	22.99
	25BBDD0011	6,977,922	564,857	-6	13.8m at 1.76g/t Au	15	35	121	29.1
	25BBDD0012	6,977,906	564,845	-6	15.84m at 2.99g/t Au	14	30	121	31
	25BBDD0013	6,977,888	564,834	-6	13.08m at 2.2g/t Au	16	29	121	29.31
	25BBDD0014	6,977,873	564,822	-7	19.68m at 1.92g/t Au	20	24	121	41.2
	25BBDD0015	6,977,863	564,815	-6	3.69m at 2.36g/t Au	19	24	137	37.03
					12.03m at 5.68g/t Au	25			
	25BBDD0016	6,977,824	564,786	-5	14.67m at 3.83g/t Au	24	14	121	38.59
	25BBDD0017	6,978,048	564,960	-32	3.3m at 2.11g/t Au	34	16	87	38.5
	25BBDD0018	6,977,974	564,910	-30	NSI		28	88	34.05
	25BBDD0019	6,977,973	564,909	-30	NSI		30	135	29.15
	25BBDD0020	6,977,951	564,893	-30	NSI		28	130	23.1
	25BBDD0021	6,977,906	564,861	-29	4.80m at 1.05g/t Au	16	26	130	31.21
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,		8.36m at 1.07g/t Au	23			
	25BBDD0022	6,977,888	564,846	-28	13.26m at 1.76g/t Au	18	26	120	31.15
	25BBDD0023	6,977,872	564,835	-28	13.03m at 1.13g/t Au	19	25	120	31.78
	25BBDD0024	6,977,856	564,822	-27	7.91m at 1.42g/t Au	19	28	119	28.97
	25BBDD0025	6,977,838	564,810	-27	12.96m at 1.61g/t Au	17	28	119	30.19
	25BBDD0026	6,977,829	564,803	-28	6.93m at 1.97g/t Au	26	21	114	33.56
	25BBDD0031	6,978,135	565,051	-80	9.53m at 1.82g/t Au	28	36	57	64.55
	25BBDD0031	6,978,134	565,051	-81	NSI	20	37	124	20.38
	25BBDD0033	6,978,108	565,031	-82	NSI		37	69	24.55
	25BBDD0034	6,978,108	565,030	-82	NSI		35	128	27.32
Fender	2000000	3,575,100	000,000	52	1101			120	27.02
Fender	25FNDD0007	6,975,377	562,858	208	NSI		-31	106	136.64
· ciiuci	25FNDD0008	6,975,377	562,858	208	NSI	96	-35	126	116.6
	25FNDD0009	6,975,377	562,858	208	NSI	92	-36	138	116.5
	25FNDD0003	6,975,328	562,768	196	NSI	137	-35	116	160.8
	25FNDD0013	6,975,328	562,768	196	NSI	107	-35	127	152.6
	25FNDD0014 25FNDD0015	6,975,326	562,767	196	NSI	114	-35	127	131.7
	25FNDD0015 25FNDD0016	6,975,326	562,767	196	NSI	95	-27 -15	134	131.7
	25FNDD0016 25FNDD0017	6,975,328	562,768	197	NSI	111	-15	134	122.68
	25FNDD0017 25FNDD0025		562,788	168	11.74m at 1.47g/t Au		-23 -54	74	241.47
	25FNDD0025 25FNDD0027	6,975,318	562,788	168	10.34m at 1.47g/t Au	216	-54 -43		170.52
		6,975,317	,		,	146		76	
	25FNDD0028	6,975,317	562,787	168	9.70m at 2.59g/t Au	120	-38	87	140.51
	25FNDD0029	6,975,317	562,787	168	NSI		-50	87	182.52
	25FNDD0030	6,975,317	562,787	168	NSI		-46	100	155.57
	25FNDD0036B	6,975,318	562,788	168	NSI		-26	73	131.76
	25FNDD0036C	6,975,318	562,788	168	NSI		-24	73	137.5

Lode	Hole	Collar N	Collar E	Collar RL	Intercept (Downhole)	From (m)	Dip	Azi	Total Length (m)
Great Fingall		T							
Golden Crown	24GCDD006	6,961,732	584,243	9	NSI		-23	230	312.15
	24GCDD010	6,961,732	584,243	9	4m at 3.97g/t Au	248	-25	235	332.85
	24GCDD017	6,961,732	584,243	9	2.63m at 12.51g/t Au	177	-25	242	337.53
					4.66m at 3.30g/t Au	279			
					7.23m at 12.25g/t Au	312			
	25GCDD010	6,961,747	584,240	9	NSI		-29	245	266.84
	25GCDD013	6,961,748	584,240	9	7.33m at 1.77g/t Au	181	-25	261	258.13
					8.22m at 6.68g/t Au	194			
					5.56m at 2.06g/t Au	204			
					12.09m at 1.03g/t Au	224			
Great Fingall	24GFDD084	6,961,832	584,400	39	NSI		-36	44	274.07
	24GFDD086A	6,961,833	584,399	39	NSI		-45	26	296.58
	24GFDD087	6,961,833	584,399	39	NSI		-50	20	305.65
	24GFDD088	6,961,833	584,399	39	NSI		-55	12	313.87
	24GFDD089A	6,961,833	584,398	39	NSI		-58	2	335.36
	24GFDD090A	6,961,833	584,398	39	NSI		-23	352	191.36
	24GFDD091	6,961,832	584,399	39	5.12m at 1.08g/t Au	38	-32	350	387.32
					.81m at 38.20g/t Au	171			
					1.49m at 9.56g/t Au	177			
					10.24m at 1.30g/t Au	320			
		1			12.5m at 2.06g/t Au	334			
	24GFDD092	6,961,832	584,401	39	1.51m at 7.32g/t Au	318	-27	358	353.8
	2401 00002	0,001,002	504,401		2.25m at 3.11g/t Au	323	27	- 000	000.0
	24GFDD093	6,961,832	584,401	39	7.76m at 6.56g/t Au	312	-34	355	351.08
	24GFDD094	6,961,831	584,401	39	8.77m at 0.86g/t Au	37	-30	1	170.44
	24GFDD094A	6,961,832	584,401	39	2.5m at 4.27g/t Au	303	-29	0	335.14
			· ·					359	
	24GFDD095	6,961,832	584,401	39	10.2m at 1.11g/t Au	286	-38		341.74
	24GFDD096	6,961,832	584,401	39	1.49m at 5.61g/t Au	59	-33	10	308.37
					6.27m at 7.75g/t Au	270			
	24GFDD097	6,961,832	584,401	39	NSI		-41	7	317.58
	24GFDD098	6,961,832	584,399	39	4.41m at 2.75g/t Au	260	-33	18	296.46
	24GFDD099	6,961,832	584,400	39	NSI		-43	17	305.61
	24GFDD124A	6,962,173	584,715	269	14.64m at 0.41g/t Au	203	-54	270	704.9
					3.1m at 2.72g/t Au	226			
					4.77m at 1.72g/t Au	271			
	24GFDD125A	6,962,147	584,753	267	5.14m at 1.10g/t Au	-	-48	268	701.96
					6.14m at 1.54g/t Au	18			
					3.82m at 2.51g/t Au	40			
					4.29m at 1.50g/t Au	49			
					14.73m at 1.36g/t Au	57			
					7.27m at 1.79g/t Au	114			
				_	7.19m at 0.99g/t Au	124			
					2.97m at 2.05g/t Au	152			
					8.14m at 1.49g/t Au	184			
					6.27m at 1.71g/t Au	243			
		1			4.3m at 1.45g/t Au	257			
		1			4.81m at 1.15g/t Au	288			
		1			7.9m at 0.65g/t Au	379			
		1			11.38m at 0.51g/t Au	458			
		1			2m at 9.06g/t Au	533			
	24SHDD053	6,961,788	584,361	-8	NSI		0	22	335.55
	24SHDD054	6,961,788	584,361	-8	NSI		2	20	239.55
	24SHDD054A	6,961,789	584,361	-8	NSI		-1	17	347.17
	25SHDD003	6,962,067	584,908	254	NSI		3	307	134.8
	25SHDD003 25SHDD003A	6,962,067	584,908	254	13.6m at 1.31g/t Au	154	0	307	169.28

Lode	Hole	Collar N	Collar E	Collar RL	Intercept (Downhole)	From (m)	Dip	Azi	Total Length (m)
	25SHDD004	6,962,067	584,908	254	NSI		0	308	170.12
	25SHDD005	6,961,951	584,592	83	6.13m at 0.83g/t Au	3	-68	292	130.98
	25SHDD006	6,961,951	584,592	83	NSI		-68	293	41.49
	25SHDD007	6,961,922	584,598	-40	NSI		5	17	53.62
	25SHDD007A	6,961,922	584,598	-40	NSI		7	17	71.32
	25SHDD007B	6,961,922	584,598	-40	NSI		2	16	47.59
	25SHDD007C	6,961,922	584,598	-40	NSI		4	11	48.05
	25SHDD008	6,961,922	584,598	-40	NSI		9	6	79.84
	25SHDD009	6,961,979	584,541	-43	NSI		9	23	47.6
	25SHDD009A	6,961,979	584,541	-43	NSI		6	24	44.23
	25SHDD010	6,961,979	584,516	-43	NSI		7	350	102.51
Sovereign	24SVDD012	6,961,752	584,253	145	10.27m at 1.16g/t Au	10	7	4	269.8
					2.22m at 10.01g/t Au	30			
	24SVDD015	6,961,752	584,253	145	7.2m at 1.61g/t Au	9	8	12	230.51
	24SVDD019	6,961,752	584,252	144	5.76m at 1.14g/t Au	10	-30	328	149.33
					8.6m at 1.44g/t Au	19			
					8.94m at 0.59g/t Au	35			
	24SVDD021	6,961,752	584,253	144	10.24m at 1.52g/t Au	9	-11	6	146.67
					5m at 1.02g/t Au	27			
					5m at 2.30g/t Au	93			
	24SVDD023	6,961,752	584,252	144	4.85m at 3.37g/t Au	71	-43	334	116.6
					9.24m at 1.00g/t Au	80			
	24SVDD025	6,961,752	584,254	144	16.69m at 0.84g/t Au	71	-34	17	95.69
	24SVDD031	6,961,713	584,236	141	4.96m at 1.62g/t Au	40	-41	10	122.34
	24SVDD032A	6,961,711	584,237	141	1.17m at 12.50g/t Au	-	-46	42	110.57
	24SVDD037	6,961,715	584,228	141	5.15m at 2.90g/t Au	12	-60	273	74.69
	24SVDD037A	6,961,715	584,228	141	5.12m at 2.91g/t Au	12	-59	273	299.33
					3m at 3.29g/t Au	54			
					7m at 1.57g/t Au	149			
	24SVDD038	6,961,714	584,227	141	2.31m at 3.69g/t Au	3	-51	261	132.79
					5m at 4.74g/t Au	16			
					20.51m at 0.72g/t Au	97			
	24SVDD038A	6,961,714	584,227	141	2.37m at 3.37g/t Au	18	-53	264	317.42
					3.93m at 1.32g/t Au	145			
					12.48m at 3.35g/t Au	181			
					6.95m at 2.66g/t Au	211			
					15.96m at 23.17g/t Au	264			
					7.53m at 2.13g/t Au	284			
Bluebird									
Bluebird	24BLDD196	7,043,943	641,579	47	NSI		-59	88	84.00
	24BLDD196A	7,043,943	641,579	47	NSI		-58	91	59.14
	24BLDD196B	7,043,942	641,579	47	NSI		-59	87	107.70
	24BLDD198	7,043,943	641,579	47	NSI		-34	98	46.60
	24BLDD198A	7,043,943	641,579	47	5.00m at 8.31g/t Au	88	-36	98	130.10
	24BLDD199	7,043,942	641,579	47	7.21m at 13.12g/t Au	130	-56	109	173.35
					2.00m at 6.71g/t Au	139			
	25BLDD064	7,043,942	641,579	47	8.16m at 3.77g/t Au	133	-52	85	209.82
	25BLDD065	7,043,942	641,579	47	NSI		-50	70	101.80
	25BLDD065A	7,043,942	641,579	47	NSI		-50	70	103.10
	25BLDD066	7,043,942	641,579	47	6.71m at 15.50g/t Au	100	-44	101	148.82
	25BLDD067	7,043,918	641,572	47	NSI		-46	120	172.99
	25BLDD068	7,043,919	641,572	47	7.46m at 11.90g/t Au	148	-50	137	179.56
	25BLDD071	7,043,919	641,572	47	3.94m at 10.20g/t Au	107	-40	109	137.78
Edin Hope	25BLDD001	7,043,581	641,434	105	6.75m at 0.90g/t Au	15	11	113	308.50
	25BLDD003	7,043,581	641,434	104	2.27m at 2.80g/t Au	18	-7	127	177.00
	25BLDD003	7,045,501	0-11,-10-1		2.27111 at 2.0067 t7 ta			127	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Lode	Hole	Collar N	Collar E	Collar RL	Intercept (Downhole)	From (m)	Dip	Azi	Total Length (m)
	25BLDD015	7,043,581	641,433	103	2.00m at 4.70g/t Au	25	-20	145	408.12
					3.00m at 2.20g/t Au	30			
	25BLDD069	7,043,582	641,434	105	2.00m at 6.15g/t Au	18	22	131	175.53
	25BLDD070	7,043,919	641,572	47	NSI		-44	101	149.58
Polar Star	25BLDD001	7,043,581	641,434	105	16.80m at 1.37g/t Au	251	11	113	137.78
					3.03m at 157.10g/t Au	270			
	25BLDD002	7,043,581	641,434	105	2.52m at 7.83g/t Au	260	10	126	314.49
					2.47m at 4.60g/t Au	266			
					2.00m at 3.12g/t Au	272			
	25BLDD004	7,043,581	641,433	105	10.00m at 1.10g/t Au	277	10	134	323.88
	25BLDD005	7,043,581	641,434	104	5.00m at 2.96g/t Au	289	2	134	323.10
	25BLDD006	7,043,581	641,434	103	2.00m at 3.17g/t Au	262	-15	134	362.87
					11.85m at 3.00g/t Au	283			
					5.00m at 1.64g/t Au	298			
	25BLDD007	7,043,581	641,434	105	2.00m at 35.18g/t Au	286	9	141	341.75
	25BLDD008	7,043,581	641,433	103	4.00m at 1.41g/t Au	248	2	141	517.23
			•		14.00m at 2.43g/t Au	281			
	25BLDD009	7,043,581	641,434	104	2.00m at 8.16g/t Au	239	-5	141	341.84
		1	,		8.63m at 1.38g/t Au	280			
	25BLDD010	7,043,581	641,434	103	9.65m at 2.21g/t Au	295	-14	140	375.05
	25BLDD011	7,043,581	641,434	103	5.00m at 15.67g/t Au	287	-21	140	383.91
	202222011	7,010,001	0,		11.00m at 1.02g/t Au	295			000.01
					14.70m at 1.51g/t Au	336			
	25BLDD013	7,043,581	641,434	104	2.00m at 10.75g/t Au	242	1	147	552.08
	200200010	7,040,001	041,404	104	6.38m at 4.14g/t Au	289		147	002.00
					2.00m at 29.66g/t Au	314			
	25BLDD014	7,043,581	641,434	104	4.00m at 2.60g/t Au	271	-5	146	354.53
	23000014	7,043,361	041,434	104	8.00m at 3.97g/t Au	285	-5	140	334.33
					2.00m at 2.97g/t Au	305			
					9.57m at 3.39g/t Au				
	0501 00045	7.040.504	0.44, 400	100	ŭ	317	00	4.45	400.40
	25BLDD015	7,043,581	641,433	103	20.39m at 1.95g/t Au	307	-20	145	408.12
	25BLDD016	7,043,581	641,434	104	4.00m at 1.80g/t Au	267	-4	150	369.30
					3.00m at 15.48g/t Au	279			
					2.10m at 6.16g/t Au	294			
					2.47m at 16.27g/t Au	314			
					7.00m at 2.59g/t Au	336			
	25BLDD017	7,043,581	641,433	103	12.00m at 1.20g/t Au	312	-19	148	408.12
					7.00m at 4.01g/t Au	335			
	25BLDD021	7,043,582	641,434	104	3.70m at 4.29g/t Au	312	-11	154	437.69
					2.00m at 21.61g/t Au	320			
					13.16m at 4.06g/t Au	325			
					9.88m at 0.70g/t Au	355			
						-			
	25BLDD022	7,043,582	641,434	104	8.75m at 1.37g/t Au	354	-14	160	457.00
					10.70m at 3.59g/t Au	366			
					17.84m at 1.29g/t Au	381			
	25BLDD053	7,043,630	641,473	33	NSI		-18	148	69
	25BLDD057	7,043,771	641,483	23	NSI		-35	206	218.54
	25BLDD058	7,043,771	641,483	23	NSI		-33	178	278.67
	25BLDD059	7,043,771	641,483	23	NSI		-41	186	353.60
	25BLDD060	7,043,771	641,483	23	NSI		-41	172	369.21
	25BLDD061	7,043,771	641,483	23	NSI		-52	162	263.36
	25BLDD062	7,043,771	641,483	23	NSI		-55	175	286.10
	25BLDD072	7,043,581	641,434	105	6.50m at 5.48g/t Au	263	10	119	308.70
	25BLDD073	7,043,919	641,572	47	NSI		-36	152	101.87
	25BLDD073A	7,043,919	641,572	47	NSI		-35	153	191.22

Lode	Hole	Collar N	Collar E	Collar RL	Intercept (Downhole)	From (m)	Dip	Azi	Total Length (m)
	25BLDD096	7,043,946	641,580	47	NSI		-39	62	185.16
South Junction	25BLDD001	7,043,581	641,434	105	8.60m at 3.33g/t Au	124	11	113	308.50
	25BLDD002	7,043,581	641,434	105	12.28m at 4.54g/t Au	133	10	126	314.49
	25BLDD003	7,043,581	641,434	104	21.20m at 1.74g/t Au	131	-7	127	177.00
	25BLDD005	7,043,581	641,434	104	15.50m at 1.90g/t Au	152	2	134	323.10
	25BLDD006	7,043,581	641,434	103	12.13m at 1.59g/t Au	152	-15	134	362.87
					12.00m at 1.48g/t Au	167			
	25BLDD007	7,043,581	641,434	105	17.99m at 3.83g/t Au	168	9	141	341.75
	25BLDD008	7,043,581	641,433	103	6.00m at 2.26g/t Au	165	2	141	517.23
					10.00m at 2.28g/t Au	175			
	25BLDD009	7,043,581	641,434	104	7.15m at 1.63g/t Au	160	-5	141	341.84
					8.70m at 3.34g/t Au	172			
	25BLDD010	7,043,581	641,434	103	21.00m at 2.88g/t Au	163	-14	140	375.05
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,		2.00m at 2.77g/t Au	187		-	
	25BLDD011	7,043,581	641,434	103	27.82m at 1.95g/t Au	162	-21	140	383.91
	25BLDD012	7,043,581	641,433	105	7.82m at 0.88g/t Au	184	9	146	356.86
	230100012	7,043,301	041,400	103	10.50m at 3.31g/t Au	194	3	140	330.00
	25BLDD013	7,043,581	641,434	104	5.00m at 1.20g/t Au	178	1	147	552.08
	25BLDD013	7,043,581	641,434	104			- 1	147	552.08
					17.00m at 3.90g/t Au	186	_		
	25BLDD014	7,043,581	641,434	104	10.00m at 1.17g/t Au	170	-5	146	354.53
					14.00m at 1.90g/t Au	184			
	25BLDD015	7,043,581	641,433	103	14.50m at 3.69g/t Au	169	-20	145	408.12
					6.45m at 1.55g/t Au	188			
	25BLDD016	7,043,581	641,434	104	12.57m at 2.88g/t Au	199	-4	150	369.30
	25BLDD017	7,043,581	641,433	103	21.50m at 7.16g/t Au	185	-19	148	408.12
					4.00m at 3.22g/t Au	211			
	25BLDD021	7,043,582	641,434	104	13.00m at 0.92g/t Au	194	-11	154	437.69
					12.12m at 2.70g/t Au	211			
	25BLDD022	7,043,582	641,434	104	5.89m at 5.34g/t Au	237	-14	160	457.00
					7.73m at 2.29g/t Au	247			
					4.43m at 2.92g/t Au	287			
	25BLDD063	7,043,582	641,434	105	7.00m at 0.92g/t Au	177	18	144	218.43
		1,010,000	,		7.00m at 1.85g/t Au	192			
	25BLDD072	7,043,581	641,434	105	2.97m at 2.31g/t Au	123	10	119	308.70
Starlight	20020072	7,040,001	041,404	100	2.07111 dt 2.018/17/d	120	.0	110	000.70
Nightfall	NF1050GC01	7,199,054	636,388	52	10m at 26.42g/t Au	149	-12	109	170.6
Nigiitiatt	NF1050GC01	7,199,054	636,389	52	2.33m at 2.73g/t Au	118	-12	110	167.9
	NF1050GC02	7,199,054	636,369	52			-20	110	167.9
	NEADEOCOO	7.400.055	000 000	50	9m at 1.72g/t Au	140	07	444	100
	NF1050GC03	7,199,055	636,389	52	2.6m at 2.28g/t Au	100	-27	111	169
					9m at 3.06g/t Au	115			
		4			8.5m at 4.74g/t Au	144			
					3.3m at 2.98g/t Au	156			
	NF1050GC04	7,199,055	636,388	53	4.22m at 8.85g/t Au	109	-5	99	179.6
					16.9m at 4.14g/t Au	135			
					6.32m at 7.25g/t Au	160			
	NF1050GC05	7,199,054	636,388	52	6.66m at 2.38g/t Au	137	-13	103	170.6
	NF1050GC06	7,199,054	636,389	52	8.4m at 3.62g/t Au	114	-21	103	170.7
					5m at 4.13g/t Au	134			
	NF1050GC07	7,199,054	636,389	52	2.1m at 3.48g/t Au	140	-29	104	161.6
	NF1050GC08	7,199,055	636,388	52	10.48m at 9.41g/t Au	135	-13	97	170.5
	NF1050GC09	7,199,054	636,389	52	2m at 2.6g/t Au	113	-30	97	170.5
	11300000	1,.00,004	220,000	02	13.1m at 7.14g/t Au	136	- 50		
	NF1050GC38	7,199,055	636,388	53	5.86m at 10.06g/t Au	119	-3	108	218.6
	141 10300030	7,100,000	000,000	55	12.87m at 6.6g/t Au	154	-5	100	210.0
	NF1050GC39	7,199,054	636,388	53	5.05m at 2.01g/t Au	115	-8	103	170.6
	INF TUDUGGS	7,188,054	030,388	53			-0	103	170.6
	J				14.72m at 5.54g/t Au	136]

Lode	Hole	Collar N	Collar E	Collar RL	Intercept (Downhole)	From (m)	Dip	Azi	Total Length (m)
	NF1050GC40	7,199,055	636,388	53	26.1m at 6.62g/t Au	160	2	99	212.6
	NF1050GC41	7,199,055	636,388	53	9.3m at 2.45g/t Au	145	2	94	211
					6m at 10.25g/t Au	158			
					5.1m at 11.01g/t Au	167			
					2.7m at 8.16g/t Au	175			
	NF1050GC42	7,199,055	636,388	53	4.43m at 264.37g/t Au	111	3	88	203.7
					2m at 3.8g/t Au	145			
					2.9m at 2.63g/t Au	151			
					13.05m at 6.22g/t Au	157			
					15.15m at 17.11g/t Au	173			
	NF1095GC27	7,198,941	636,546	92	5.21m at 9.03g/t Au	24	-15	294	47.5
					2.06m at 3.68g/t Au	36			
	NF1095GC29	7,198,941	636,547	91	3m at 7.56g/t Au	26	-29	262	56.6
	NF1095GC30	7,198,965	636,544	91	NSI	-	-28	53	25
	NF1095GC31	7,198,872	636,595	92	4.65m at 2.78g/t Au	53	-7	282	77.7
	NF1095GC32	7,198,871	636,595	92	2m at 11.73g/t Au	47	-5	262	71
	NF1095GC33	7,198,871	636,595	92	2.36m at 3.41g/t Au	55	-16	263	80.4
	NF1095GC34	7,198,870	636,596	92	NSI	-	-7	254	72.5
	NF1095GC35	7,198,869	636,596	92	4.27m at 5.25g/t Au	50	-8	240	71.5
	NF1095GC36	7,198,869	636,596	92	NSI	_	-16	247	75.9
	NF1095GC37	7,198,869	636,596	92	NSI	_	-8	227	35.6
	NF1095GC37A	7,198,869	636,596	92	5.6m at 4.34g/t Au	56	-8	224	81.9
	NF1095GC39	7,198,871	636,549	90	NSI	-	-27	48	41.7
	NF1095GC40	7,198,871	636,549	91	3.6m at 4.81g/t Au	44	-4	58	91.6
	141 10000040	7,100,071	000,040	0.1	3.2m at 8.91g/t Au	69	-		01.0
	NF1095GC41	7,198,871	636,549	91	3.35m at 1.96g/t Au	35	-22	84	54
	141 10000041	7,100,071	000,040	31	2m at 3.37g/t Au	52			
	NF1095GC42	7,198,871	636,549	91	NSI	-	-5	88	54.9
	NF1095GC43	7,198,871	636,544	93	19.58m at 2.21g/t Au	3	22	42	53.4
	10936643	7,198,904	030,344	93	2.01m at 29.4g/t Au	43	22	42	33.4
	NE100ECC44	7 100 004	COC E 4.4	02		3	23	60	F7.0
	NF1095GC44	7,198,964	636,544	93	3.22m at 4.48g/t Au	39	23	60	57.2
	NE100ECC4E	7.100.000	C2C F0F	0.4	3m at 5.05g/t Au	39	01	222	60.0
	NF1095GC45	7,198,869	636,595	94	NSI	-	21	223	60.2
	NF1095GC46	7,199,009	636,561	96	3.5m at 2.83g/t Au	6	39	279	32.4
	NF1095GC47	7,198,964	636,545	92	8.1m at 3.35g/t Au	14	-22	100	31
	NF1120GC110	7,199,112	636,567	122	4.07m at 3.72g/t Au	26	23	359	40
	NF1120GC112	7,199,112	636,563	122	5.48m at 1.97g/t Au	6	28	304	25
	NF895GC01	7,199,015	636,458	-102	2m at 8.13g/t Au	16	32	70	73.9
					4.55m at 9.84g/t Au	22			ļ
					5.36m at 2.58g/t Au	48			ļ
					2.57m at 29.89g/t Au	57			
	NF895GC02	7,199,013	636,459	-103	7.61m at 3.68g/t Au	46	18	69	65.7
	NF895GC03	7,199,013	636,459	-104	2.67m at 2.02g/t Au	8	0	69	50
					3.1m at 5.5g/t Au	14			
					2.74m at 4.73g/t Au	36			
	NF895GC04	7,199,013	636,458	-105	5.53m at 5.23g/t Au	33	-19	68	50.6
	NF895GC05	7,199,013	636,458	-105	6.6m at 2.52g/t Au	16	-36	67	56.8
					5.26m at 7.55g/t Au	40			
	NF895GC06	7,199,012	636,458	-105	4.82m at 2.79g/t Au	2	-48	66	33
					6.84m at 3.8g/t Au	17			
·	NF895GC06A	7,199,014	636,458	-105	2m at 19.45g/t Au	22	-49	68	80.6
					2.6m at 13.73g/t Au	64			
	NF895GC07	7,199,014	636,459	-102	6m at 1.84g/t Au	16	35	89	76.9
					3.53m at 3.1g/t Au	40			
					9.2m at 2.61g/t Au	49			
	NF895GC08	7,199,012	636,458	-104	8m at 2.31g/t Au	12	0	89	61.6

Lode	Hole	Collar N	Collar E	Collar RL	Intercept (Downhole)	From (m)	Dip	Azi	Total Length (m)
					7.8m at 2.81g/t Au	30			
	NF895GC11	7,199,013	636,458	-105	6m at 3.87g/t Au	42	-51	88	71.9
	NF895GC12	7,199,013	636,459	-103	2.9m at 2.18g/t Au	7	18	108	59.5
					3.25m at 3.03g/t Au	33			
					8m at 4.75g/t Au	42			
	NF895GC13	7,199,013	636,459	-104	2m at 5.07g/t Au	19	0	109	49.3
					4.4m at 5.61g/t Au	31			
					2.35m at 6.18g/t Au	38			
	NF895GC17	7,199,011	636,459	-103	9m at 4.15g/t Au	51	30	124	70.9
	NF895GC18	7,199,012	636,459	-103	8m at 1.96g/t Au	45	16	124	67.3
					3.3m at 3.38g/t Au	58			
	NF895GC19	7,199,012	636,459	-103	3.6m at 2.93g/t Au	16	0	125	62.4
	NF895GC22	7,199,011	636,458	-103	3m at 2.67g/t Au	1	26	135	80.3
					3.6m at 2.9g/t Au	20			
					2m at 7.51g/t Au	54			
					5.25m at 3.53g/t Au	60			
	NF895GC23	7,199,011	636,458	-103	5.75m at 2.43g/t Au	17	14	136	76.6
					4.65m at 3.9g/t Au	52			
	NF895GC26	7,199,011	636,458	-103	4.55m at 4.46g/t Au	5	22	143	92.4
					8.75m at 8.98g/t Au	56			
	NF895GC27	7,199,011	636,458	-104	5.85m at 5.02g/t Au	59	12	145	82.9
	NF895GC28	7,199,011	636,458	-104	6.47m at 2.85g/t Au	51	0	145	80.1
	NF895GC32	7,199,024	636,446	-101	NSI	-	30	71	110.4
	NF895GC37	7,199,023	636,446	-101	10m at 4.04g/t Au	64	32	59	146.5
					3.9m at 7.13g/t Au	100			
					6.2m at 8.17g/t Au	107			
					4.4m at 6.51g/t Au	117			
	NF895GC38	7,199,025	636,446	-102	8.26m at 3.4g/t Au	144	25	49	310.1
					3.05m at 13.78g/t Au	175			
					5.04m at 2.11g/t Au	187			
					3.1m at 2.72g/t Au	217			
	NF895GC39	7,199,024	636,446	-102	3.6m at 9.25g/t Au	58	27	56	154.4
					13.63m at 7.04g/t Au	89			
					10.56m at 6.13g/t Au	106			
	NF1095RD01	7,198,926	636,609	91	NSI	-	-26	355	285.2
	NF1095RD02	7,198,926	636,609	91	NSI	_	-33	355	291.3
	NF1095RD03	7,198,927	636,612	91	4.36m at 2.89g/t Au	230	-37	340	306
	NF1050RD04	7,199,054	636,388	52	NSI	-	5	353	308.8
	NF1095RD05	7,198,926	636,609	91	2.3m at 18.13g/t Au	245	-43	337	320
					5m at 7.26g/t Au	254			
					5m at 1.27g/t Au	274			
	NF1095RD06	7,198,927	636,612	91	3.44m at 1.9g/t Au	241	-31	2	290
		,:,			2.4m at 2.85g/t Au	260			
	NF1095RD07	7,198,927	636,612	91	5m at 3.34g/t Au	268	-38	350	288.1
		, , , , , , , , , , , , , , , , , , , ,	,		3.69m at 1.59g/t Au	276			
	NF1095RD20	7,198,927	636,611	91	3.4m at 2.36g/t Au	288	-52	339	320
	NF1095RD21	7,198,927	636,611	91	NSI	-	-56	331	344.7
	NF1095RD22A	7,198,927	636,611	91	3.68m at 5.88g/t Au	298	-60	315	362.3
		7,130,027	555,011	01	5.5m at 2.61g/t Au	323		0.0	552.0
					6m at 1.54g/t Au	336			
	NF1095RD23	7,198,927	636,611	91	NSI	330	-62	326	349.9
Starlight	ST835GC01	7,198,527	636,544	-159	2.4m at 16.55g/t Au	42	15	63	29.5
Caragilt	ST835GC01	7,198,562	636,544	-159	17.08m at 6.17g/t Au	26	16	33	73.9
	ST835GC02 ST835GC03	7,198,562	636,544	-159	9.62m at 14.35g/t Au	41	13	7	65.7
	ST835GC03 ST835GC04			-159	9.62m at 14.35g/t Au NSI		-20		50
		7,198,562	636,544			- 10		84	
	ST835GC05	7,198,562	636,544	-161	2.5m at 2.5g/t Au	18	-34	58	50.6

ST258RD1	Lode	Hole	Collar N	Collar E	Collar RL	Intercept (Downhole)	From (m)	Dip	Azi	Total Length (m)
STE2SRD01		ST835GC06	7,198,562	636,544	-161	3.37m at 2.72g/t Au	14	-19	85	56.8
ST826RD06						3.74m at 1.49g/t Au	45			33
1.4 1.4 1.5		ST825RD01	7,199,024	636,446	-102	2.57m at 2.74g/t Au	308	-57	6	470
ST828RD10		ST825RD06	7,199,024	636,446	-102	4.2m at 4.82g/t Au	185	-51	51	316.6
ST825RD10						14.05m at 11.43g/t Au	214			
ST82SRD10						2.45m at 2.84g/t Au	239			
ST825RD11						9.85m at 1.77g/t Au	290			
STR25RD11		ST825RD10	7,199,024	636,446	-102	3.45m at 2.42g/t Au	257	-63	84	350.8
ST828PD12						3.48m at 3.71g/t Au	296			
ST840RD01		ST825RD11	7,199,011	636,458	-104	3.91m at 5.63g/t Au	279	-82	39	497.1
ST840RD02		ST825RD12	7,199,024	636,446	-102	NSI	-	-64	96	368.3
ST840RD03		ST840RD01	7,198,700	636,411	-159	NSI	-	-20	58	121
ST840RD04		ST840RD02	7,198,700	636,411	-159	NSI	-	-16	45	128.4
ST840RD05		ST840RD03	7,198,702	636,410	-158	NSI	-	-16	69	227.8
ST840RD06		ST840RD04	7,198,701	636,410	-159	5m at 1.46g/t Au	158	-27	69	223.1
ST840RD06		ST840RD05	7,198,700	636,411	-159	NSI	-	-16	52	254.6
ST840RD08		ST840RD06	7,198,700	636,410	-159	2.04m at 20.5g/t Au	100	-28	57	242.8
ST840RD08		ST840RD07	7,198,701	636,411	-159	6.16m at 7.61g/t Au	128	-14	36	279
ST840RD09		ST840RD08		636,410	-159	5.54m at 8.55g/t Au	122	-30	40	272.95
ST840RD10						3m at 4.84g/t Au	261			
ST840RD10		ST840RD09	7,198,701	636,410	-159	2.21m at 2.57g/t Au	135	-12	27	314.4
A.56m at 6.44g/t Au							151			
A.56m at 6.44g/t Au		ST840RD10	7,198,700	636,410	-159		108	-24	30	286.9
ST840RD11			, ,				140			
ST840RD11							167			
ST840RD12		ST840RD11	7,198,701	636,410	-159		-	-10	22	342
ST840RD13		ST840RD12		· ·	-159	4m at 34.69g/t Au	180	-22	23	200.5
ST840RD14				· ·			-			250
ST840RD15				· ·			128			341.5
ST840RD15			, , , , ,	,				_		
2.01m at 5.97g/t Au 290 3.7m at 3.58g/t Au 362 3.7m at		ST840RD15	7.198.702	636,410	-159			-16	10	424.1
ST840RD16			,,,,,,,,,,	,		<u> </u>				
ST840RD16 7,198,699 636,411 -159 NSI 43 89 119.77 ST840RD18 7,198,699 636,411 -159 NSI 45 76 152. ST840RD19 7,198,699 636,411 -159 NSI 63 75 199. ST840RD20 7,198,699 636,411 -159 NSI 44 61 149. ST840RD21 7,198,700 636,410 -159 4m at 2.46g/t Au 73 -41 49 169. ST840RD22 7,198,701 636,410 -159 7.5m at 17.04g/t Au 123 -50 45 278. ST840RD23 7,198,701 636,410 -159 6.37m at 1.81g/t Au 132 -39 37 191. ST840RD24 7,198,701 636,410 -159 3.4m at 5.86g/t Au 103 -36 28 165. ST840RD25 7,198,701 636,410 -159 2.6m at 3.41g/t Au 103 -43 24 218.9 <										
ST840RD18 7,198,699 636,411 -159 NSI 45 76 152. ST840RD19 7,198,699 636,411 -159 NSI 63 75 199. ST840RD20 7,198,699 636,411 -159 NSI 44 61 149. ST840RD21 7,198,700 636,410 -159 4m at 2.46g/t Au 73 -41 49 169. ST840RD22 7,198,701 636,410 -159 7.5m at 17.04g/t Au 111		ST840RD16	7.198.699	636,411	-159			-43	89	119.76
ST840RD19			1 1	i i			=			152.7
ST840RD20							=			199.4
ST840RD21 7,198,700 636,410 -159 4m at 2.46g/t Au 73 -41 49 169.9 ST840RD22 7,198,701 636,410 -159 7.5m at 17.04g/t Au 123 -50 45 278. ST840RD23 7,198,701 636,410 -159 6.37m at 1.81g/t Au 132 -39 37 191. ST840RD24 7,198,701 636,410 -159 3.4m at 5.86g/t Au 103 -36 28 165. ST840RD25 7,198,701 636,410 -159 2.6m at 3.41g/t Au 103 -36 28 165. ST840RD25 7,198,701 636,410 -159 2.6m at 3.41g/t Au 103 -43 24 218.9 ST840RD26 7,198,701 636,410 -159 2.3m at 4.13g/t Au 205							_			149.6
ST840RD22 7,198,701 636,410 -159 7.5m at 17.04g/t Au 123 -50 45 278. ST840RD23 7,198,701 636,410 -159 6.37m at 1.81g/t Au 132 -39 37 191. ST840RD24 7,198,701 636,410 -159 3.4m at 5.86g/t Au 103 -36 28 165. ST840RD25 7,198,701 636,410 -159 2.6m at 3.41g/t Au 103 -43 24 218.9 ST840RD25 7,198,701 636,410 -159 2.6m at 3.41g/t Au 103 -43 24 218.9 ST840RD26 7,198,701 636,410 -159 2.3m at 4.13g/t Au 205							73			169.9
ST840RD22 7,198,701 636,410 -159 7.5m at 17.04g/t Au 123 -50 45 278. ST840RD23 7,198,701 636,410 -159 6.37m at 1.81g/t Au 132 -39 37 191. ST840RD24 7,198,701 636,410 -159 3.4m at 5.86g/t Au 103 -36 28 165. ST840RD25 7,198,701 636,410 -159 2.6m at 3.41g/t Au 103 -43 24 218.9 ST840RD25 7,198,701 636,410 -159 2.6m at 3.41g/t Au 103 -43 24 218.9 ST840RD26 7,198,701 636,410 -159 6.2m at 1.27g/t Au 198			.,,.	,						
ST840RD23 7,198,701 636,410 -159 6.37m at 1.81g/t Au 132 -39 37 191. ST840RD24 7,198,701 636,410 -159 3.4m at 5.86g/t Au 103 -36 28 165. 4.2m at 5.42g/t Au 130 130 130 142 130 142 143 144 142 144 <		ST840RD22	7.198.701	636,410	-159			-50	45	278.3
ST840RD24 7,198,701 636,410 -159 3.4m at 5.86g/t Au 103 -36 28 165.6 4.2m at 5.42g/t Au 130 3.1m at 2.28g/t Au 142 143 144 142 142 142 143 144 142				i i						191.5
4.2m at 5.42g/t Au 130 3.1m at 2.28g/t Au 142 5.6m at 3.41g/t Au 142 5.6m at 3.41g/t Au 142 5.6m at 3.41g/t Au 103 -43 24 218.9 5.6m at 3.41g/t Au 168 5.6m at 7.46g/t Au 198 5.6m at 7.46g/t Au 198 5.6m at 7.46g/t Au 198 5.7m at 4.13g/t Au 205 5.7m at 4.13g/t Au 205 5.7m at 4.13g/t Au 205 5.7m at 4.27g/t Au 159 -39 18 254.5m at 2.9g/t Au 204 -30 18 253.5m at 3.3g/t Au 179 -25 9 221.5m at 6.07g/t Au 195 5.7m at 6.07g/t Au 246 5.7m at 1.31g/t Au 251 5.7m at 1.31g/										165.9
3.1m at 2.28g/t Au			.,,.	,						
ST840RD25 7,198,701 636,410 -159 2.6m at 3.41g/t Au 103 -43 24 218.9 2.25m at 13.72g/t Au 168										
2.25m at 13.72g/t Au 168 5m at 7.46g/t Au 198 2.3m at 4.13g/t Au 205 ST840RD26 7,198,701 636,410 -159 6.2m at 1.27g/t Au 159 -39 18 254. ST840RD27 7,198,701 636,410 -159 8.35m at 2.9g/t Au 204 -30 18 253. ST840RD31 7,198,701 636,410 -159 6m at 2.35g/t Au 179 -25 9 221. 2m at 6.07g/t Au 195 ST840RD32 7,198,701 636,410 -159 3.95m at 3.3g/t Au 195 ST840RD32 7,198,701 636,410 -159 3.95m at 3.3g/t Au 180 -23 6 269. 2.5m at 2.02g/t Au 246 7.3m at 1.31g/t Au 251		ST840RD25	7 198 701	636 410	-159			-43	24	218 92
ST840RD26 7,198,701 636,410 -159 6.2m at 1.27g/t Au 159 -39 18 254. ST840RD27 7,198,701 636,410 -159 8.35m at 2.9g/t Au 204 -30 18 253. ST840RD31 7,198,701 636,410 -159 6m at 2.35g/t Au 179 -25 9 221. 2m at 6.07g/t Au 195 ST840RD32 7,198,701 636,410 -159 3.95m at 3.3g/t Au 180 -23 6 269.9 2.5m at 2.02g/t Au 246 246 7.3m at 1.31g/t Au 251		0104011020	7,100,701	000,410	100			40		210.02
ST840RD26 7,198,701 636,410 -159 6.2m at 1.27g/t Au 159 -39 18 254. ST840RD27 7,198,701 636,410 -159 8.35m at 2.9g/t Au 204 -30 18 253. ST840RD31 7,198,701 636,410 -159 6m at 2.35g/t Au 179 -25 9 221. 2m at 6.07g/t Au 195 ST840RD32 7,198,701 636,410 -159 3.95m at 3.3g/t Au 180 -23 6 269.9 2.5m at 2.02g/t Au 246 7.3m at 1.31g/t Au 251										
ST840RD26 7,198,701 636,410 -159 6.2m at 1.27g/t Au 159 -39 18 254. ST840RD27 7,198,701 636,410 -159 8.35m at 2.9g/t Au 204 -30 18 253. ST840RD31 7,198,701 636,410 -159 6m at 2.35g/t Au 179 -25 9 221.9 2m at 6.07g/t Au 195 195 195 195 196 197 198 199			+							
ST840RD27 7,198,701 636,410 -159 8.35m at 2.9g/t Au 204 -30 18 253. ST840RD31 7,198,701 636,410 -159 6m at 2.35g/t Au 179 -25 9 221.9 2m at 6.07g/t Au 195 <td< td=""><td></td><td>ST840RD26</td><td>7 198 701</td><td>636 410</td><td>-150</td><td></td><td></td><td>-30</td><td>18</td><td>254.4</td></td<>		ST840RD26	7 198 701	636 410	-150			-30	18	254.4
ST840RD31 7,198,701 636,410 -159 6m at 2.35g/t Au 179 -25 9 221. 2m at 6.07g/t Au 195			_	· ·						
2m at 6.07g/t Au 195 ST840RD32 7,198,701 636,410 -159 3.95m at 3.3g/t Au 180 -23 6 269. 2.5m at 2.02g/t Au 246 7.3m at 1.31g/t Au 251				· ·						
ST840RD32 7,198,701 636,410 -159 3.95m at 3.3g/t Au 180 -23 6 269.9 2.5m at 2.02g/t Au 246 7.3m at 1.31g/t Au 251		310400031	7,180,701	030,410	-139			-25	9	221.9
2.5m at 2.02g/t Au 246 7.3m at 1.31g/t Au 251		STRANDIDOO	7 100 701	636 /10	-150				c	260.0
7.3m at 1.31g/t Au 251		310400032	7,180,701	030,410	-139			-∠ა	Ö	209.9
			+							
CTOMODISM / 100 /01 696 /44 460		ST840RD34	7,198,701	636,411	-158	5m at 1.31g/t Au	119	-5	40	145.1

Lode	Hole	Collar N	Collar E	Collar RL	Intercept (Downhole)	From (m)	Dip	Azi	Total Length (m)
	ST840RD39	7,198,701	636,410	-159	4.1m at 11.49g/t Au	129	-22	36	137.6
Twilight	TW1120RD08	7,198,948	636,635	121	3.46m at 8.92g/t Au	106	35	39	139.5
					2m at 2.67g/t Au	117			
	TW1120RD10	7,198,944	636,636	120	4m at 3.31g/t Au	120	33	81	151.5
	TW1120RD11	7,198,946	636,636	120	NSI	-	29	67	142.2
	TW1120RD15	7,198,948	636,635	121	NSI	-	40	46	160.8
	TW1120RD16	7,198,944	636,636	119	NSI	-	19	87	152.7
	TW1120RD18	7,198,945	636,636	119	2.2m at 2.31g/t Au	107	17	76	137.8
	TW1120RD20	7,198,946	636,636	120	NSI	-	30	52	155.5
Murphy Creek	25MCAC001	7151325	667317	554	NSI		-60.0	182	64
	25MCAC002	7151283	667316	554	NSI		-60.0	182	63
	25MCAC003	7151244	667309	554	NSI		-60.0	182	73
	25MCAC004	7151208	667310	554	NSI		-60.0	182	84
	25MCAC005	7151206	668059	554	NSI		-60.0	182	70
		7151786	668058	554	NSI			182	71
	25MCAC006	1		554	NSI		-60.0		
	25MCAC007	7151699	668052	554	NSI		-60.0	182	76
	25MCAC008	7151663	668049	554	NSI		-60.0	182	67
	25MCAC009	7151621	668047	554	NSI		-60.0	182	67
	25MCAC010	7151585	668040				-60.0	182	60
	25MCAC011	7151844	668259	554	NSI		-60.0	182	69
	25MCAC012	7151790	668259	554	13m at 0.93 g/t Au	39	-60.0	182	69
	25MCAC013	7151748	668257	554	3m at 0.17 g/t Au	25	-60.0	182	64
					2m at 0.32 g/t Au	62			
	25MCAC014	7151719	668250	554	NSI		-60.0	182	58
	25MCAC015	7151673	668246	554	NSI		-60.0	182	57
	25MCAC016	7151631	668242	554	NSI		-60.0	182	53
	25MCAC017	7151589	668241	554	NSI		-60.0	182	61
	25MCAC018	7151543	668236	554	NSI		-60.0	182	61
	25MCAC019	7151496	668233	554	NSI		-60.0	182	64
	25MCAC020	7151496	668231	554	5m at 1.20 g/t Au	59	-60.0	182	64
	25MCAC021	7151408	668229	554	NSI		-60.0	182	63
	25MCAC022	7151361	668226	554	NSI		-60.0	182	51
	25MCAC023	7151140	669407	554	NSI		-60.0	182	73
	25MCAC024	7151091	669401	554	NSI		-60.0	182	84
	25MCAC025	7151046	669410	554	NSI		-60.0	182	75
	25MCAC026	7151000	669401	554	NSI		-60.0	182	76
	25MCAC027	7150959	669395	554	NSI		-60.0	182	90
	25MCAC028	7150928	669392	554	NSI		-60.0	182	72
	25MCAC029	7151399	670145	554	NSI		-60.0	182	31
	25MCAC029 25MCAC030	7151399	670145	554	NSI		-60.0	219	53
		+		554	NSI				
	25MCAC031	7151224	670471	554		10	-60.0	219	44
	25MCAC032	7151185	670440	554	4m at 0.22 g/t Au	19	-60.0	219	50
	25MCAC033	7151156	670404	554	6m at 0.21 g/t Au	18	-60.0	219	36
	25MCAC034	7151117	670380		8m at 0.30 g/t Au	29	-60.0	219	37
	25MCAC035	7151094	670361	554	10m at 0.25 g/t Au	28	-60.0	219	56
	25MCAC036	7151066	670344	554	NSI		-60.0	219	65
	25MCAC037	7151043	670322	554	NSI		-60.0	219	48
	25MCAC038	7151165	670119	554	NSI		-60.0	182	48
	25MCAC039	7151198	670111	554	3m at 0.32 g/t Au	27	-60.0	182	57
	25MCAC040	7151239	670119	554	NSI		-60.0	182	39
	25MCAC041	7151277	670118	554	NSI		-60.0	182	11
	25MCAC042	7151321	670128	554	NSI		-60.0	182	19
	25MCAC043	7150995	669212	554	NSI		-60.0	182	77
	25MCAC044	7150963	669220	554	NSI		-60.0	182	81
	25MCAC045	7150920	669211	554	6m at 1.76 g/t Au	52	-60.0	182	58
	25MCAC046	7150890	669201	554	NSI		-60.0	182	60

Lode	Hole	Collar N	Collar E	Collar RL	Intercept (Downhole)	From (m)	Dip	Azi	Total Length (m)
	25MCAC047	7150847	669202	554	NSI		-60.0	182	69
	25MCAC048	7150803	669204	554	NSI		-60.0	182	57
	25MCAC049	7151133	670206	554	11m at 0.19 g/t Au	17	-60.0	219	36
	25MCAC050	7151169	670233	554	NSI		-60.0	219	46
	25MCAC051	7151199	670258	554	NSI		-60.0	219	70
	25MCAC052	7151235	670283	554	NSI		-60.0	219	38
	25MCAC053	7151256	670315	554	NSI		-60.0	219	38
	25MCAC054	7151291	670333	554	NSI		-60.0	219	42
	25MCAC055	7511322	670362	554	NSI		-60.0	219	52
	25MCAC056	7511355	670387	554	NSI		-60.0	219	55

Appendix B – JORC 2012 Table 1– Gold Division

SECTION 1: SAMPLING TECHNIQUES AND DATA

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code Explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	Diamond Drilling A significant portion of the data used in resource calculations has been gathered from diamond core. Multiple sizes have been used historically. This core is geologically logged and subsequently halved for sampling. Grade control holes may be whole-cored to streamline the core handling process if required.
	 Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 of the reference of the research') has these was pulverised to produce as the produce of the research of t	 Face Sampling At each of the major past and current underground producers, each development face / round is horizontally chip sampled. The sampling intervals are domained by geological constraints (e.g. rock type, veining and alteration / sulphidation etc.). The majority of exposures within the orebody are sampled. Sludge Drilling Sludge drilling at is performed with an underground production drill rig. It is an open hole drilling
	g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. • Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	method using water as the flushing medium, with a 64mm (nominal) hole diameter. Sample intervals are ostensibly the length of the drill steel. Holes are drilled at sufficient angles to allow flushing of the hole with water following each interval to prevent contamination. Sludge drilling is not used to inform resource models. RC Drilling Drill cuttings are extracted from the RC return via cyclone. The underflow from each interval is transferred via bucket to a four-tiered riffle splitter, delivering approximately three kilograms of the
Drilling techniques	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential 	recovered material into calico bags for analysis. The residual material is retained on the ground near the hole. Composite samples are obtained from the residue material for initial analysis, with the split samples remaining with the individual residual piles until required for re-split analysis or eventual disposal. RAB / Aircore Drilling Combined scoops from bucket dumps from cyclone for composite. Split samples taken from
Drill sample recovery	loss/gain of fine/coarse material.	individual bucket dumps via scoop. RAB holes are not included in the resource estimate. Blast Hole Drilling Cuttings sampled via splitter tray per individual drill rod. Blast holes not included in the resource estimate. All geology input is logged and validated by the relevant area geologists, incorporated into this is assessment of sample recovery. No defined relationship exists between sample recovery and grade. Nor has sample bias due to preferential loss or gain of fine or coarse material been noted.

Criteria	JORC Code Explanation	Commentary
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged 	 Westgold surface drill-holes are all orientated and have been logged in detail for geology, veining, alteration, mineralisation and orientated structure. Westgold underground drill-holes are logged in detail for geology, veining, alteration, mineralisation and structure. Core has been logged in enough detail to allow for the relevant mineral resource estimation techniques to be employed. Surface core is photographed both wet and dry and underground core is photographed wet. All photos are stored on the Company's servers, with the photographs from each hole contained within separate folders. Development faces are mapped geologically. RC, RAB and Aircore chips are geologically logged. Sludge drilling is logged for lithology, mineralisation and vein percentage. Logging is both qualitative and quantitative in nature. All holes are logged completely, all faces are mapped completely.
Sub-sampling techniques	If core, whether cut or sawn and whether quarter, half or all core	Blast holes -Sampled via splitter tray per individual drill rods.
and sample preparation	 taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 RAB / AC chips - Combined scoops from bucket dumps from cyclone for composite. Split samples taken from individual bucket dumps via scoop. RC - Three tier riffle splitter (approximately 5kg sample). Samples generally dry. Face Chips - Nominally chipped horizontally across the face from left to right, sub-set via geological features as appropriate. Diamond Drilling - Half-core niche samples, sub-set via geological features as appropriate. Grade control holes may be whole-cored to streamline the core handling process if required. Chips / core chips undergo total preparation. Samples undergo fine pulverisation of the entire sample by an LM5 type mill to achieve a 75µ product prior to splitting. QA/QC is currently ensured during the sub-sampling stages process via the use of the systems of an independent NATA / ISO accredited laboratory contractor. A significant portion of the historical informing data has been processed by in-house laboratories. The sample size is considered appropriate for the grain size of the material being sampled. The un-sampled half of diamond core is retained for check sampling if required. For RC chips regular field duplicates are collected and analysed for significant variance to primary results.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 Recent sampling was analysed by fire assay as outlined below; A 40g - 50g sample undergoes fire assay lead collection followed by flame atomic adsorption spectrometry. The laboratory includes a minimum of 1 project standard with every 22 samples analysed. Quality control is ensured via the use of standards, blanks and duplicates. No significant QA/QC issues have arisen in recent drilling results. Photon Assay was introduced in 2023 for Beta Hunt grade control samples. PhotonAssay™ technology (Chrysos Corporation Limited) is a rapid, non-destructive analysis of gold and other elements in mineral samples. It is based on the principle of gamma activation, which uses high energy x-rays to excite changes to the nuclear structure of selected elements. The decay is then measured to give a gold analysis. Each sample is run through two cycles with a radiation time of 15s. This methodology is insensitive to material type and thus does not require fluxing chemicals as in the fire assay methodology. Highlights of the PhotonAssay™ process are as follows: The process is non-destructive; the same sample accuracy can be determined by repeat measurements of the same sample. In addition, the instrument runs a precision analysis for each sample relating to the instrument precision The process allows for an increased sample size, about 500 g of crushed product.

Criteria	JORC Code Explanation	Commentary
		 The crushed material is not pulverised, as in the fire assay process; this ensures that gold is not smeared or lost during pulverisation (especially important if there is an expectation of visible gold that is being analysed) Historical drilling has used a combination of Fire Assay, Aqua Regia and PAL analysis. These assay methodologies are appropriate for the resources in question.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	No independent or alternative verifications are available. Virtual twinned holes have been drilled in several instances across all sites with no significant issues highlighted. Drillhole data is also routinely confirmed by development assay data in the operating environment. Primary data is collected utilising LogChief. The information is imported into a SQL database server and verified. All data used in the calculation of resources and reserves are compiled in databases (underground and open pit) which are overseen and validated by senior geologists. No adjustments have been made to any assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	All data is spatially oriented by survey controls via direct pickups by the survey department. Drillholes are all surveyed downhole, deeper holes with a Gyro tool if required, the majority with single / multishot cameras. All drilling and resource estimation is preferentially undertaken in local mine grid at the various sites. Topographic control is generated from a combination of remote sensing methods and ground-based surveys. This methodology is adequate for the resources in question.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Data spacing is variable dependent upon the individual orebody under consideration. A lengthy history of mining has shown that this approach is appropriate for the Mineral Resource Estimation process and to allow for classification of the resources as they stand. Compositing is carried out based upon the modal sample length of each individual domain.
Orientation of data in relation to geological structure	, , , , , , , , , , , , , , , , , , , ,	 Drilling intersections are nominally designed to be normal to the orebody as far as underground infrastructure constraints / topography allows. Development sampling is nominally undertaken normal to the various orebodies. Where drilling angles are sub optimal the number of samples per drill hole used in the estimation has been limited to reduce any potential bias. It is not considered that drilling orientation has introduced an appreciable sampling bias.
Sample security	The measures taken to ensure sample security.	 For samples assayed at on-site laboratory facilities, samples are delivered to the facility by Company staff. Upon delivery the responsibility for sample security and storage falls to the independent third-party operators of these facilities. For samples assayed off-site, samples are delivered to a third-party transport service, who in turn relay them to the independent laboratory contractor. Samples are stored securely until they leave site.
Audits or reviews	The results of any audits or reviews of sampling techniques and data	Site generated resources and reserves and the parent geological data is routinely reviewed by the Westgold Corporate technical team.

SECTION 2: REPORTING OF EXPLORATION RESULTS

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Native title interests are recorded against several WGX tenements. The CMGP tenements are held by the Big Bell Gold Operations (BBGO) of which Westgold has 100% ownership. Several third-party royalties exist across various tenements at CMGP, over and above the state government royalty. The Fortnum Gold Project tenure is 100% owned by Westgold through subsidiary company Aragon Resources Pty. Ltd. Various Royalties apply to the package. The most pertinent being; State Government – 2.5% NSR Beta Hunt is owned by Westgold through a sub-lease agreement with St Ives Gold Mining Company Pty Ltd (SIGMC), which gives Westgold the right to explore and mine gold and nickel. Royalties on gold production from Beta Hunt are as follows: A royalty to the state government equal to 2.5% of the royalty value of gold metal produced; and Royalties to third parties equal to 4.75% of recovered gold less allowable deductions. The Higginsville-Lakewood Operations include the Higginsville and Lakewood Mills and associated infrastructure, mining operations and exploration prospects which are located on 242 tenements owned by Westgold and covers approximately 1,800km2 total area. Royalties on the HGO gold production are as follows: Production payments of up to 1% of gross gold revenue over various tenements to traditional land owners. Royalties hold rights to receive royalties in respect of gold (and in some cases other minerals or metals) recovered from the tenements. The tenure is currently in good standing. There are no known issues regarding security of tenure. There are no known impediments to continued operation. WGX operates in accordance with all environmental conditions set down
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties	grant of the leases. The CMGP tenements have an exploration and production history in excess of 100 years. The FGO tenements have an exploration and production history in excess of 30 years. BHO tenements have an exploration and production history in excess of 60 years. HGO tenements have an exploration and production history in excess of 40 years. Westgold work has generally confirmed the veracity of historic exploration data.

Criteria	JORC Code Explanation	Commentary
Geology	Deposit type, geological setting and style of mineralisation.	вно
		Beta Hunt is situated within the central portion of the Norseman-Wiluna greenstone belt in a sequence of mafic/ultramafic and felsic rocks on the southwest flank of the Kambalda Dome.
		 Gold mineralisation occurs mainly in subvertical shear zones in the Lunnon Basalt and is characterised by shear and extensional quartz veining within a halo of biotite/pyrite alteration. Within these shear zones, coarse gold sometimes occurs where the shear zones intersect iron- rich sulphidic metasediments in the Lunnon Basalt or nickel sulphides at the base of the Kambalda Komatiite (ultramafics). The mineralised shears are represented by A-Zone, Western Flanks, Larkin and Mason zones.
		 CGO CGO is located in the Achaean Murchison Province, a granite-greenstone terrane in the northwest of the Yilgarn Craton. Greenstone belts trending north-northeast are separated by granite-gneiss domes, with smaller granite plutons also present within or on the margins of the belts.
		 Mineralisation at Big Bell is hosted in the shear zone (Mine Sequence) and is associated with the post-peak metamorphic retrograde assemblages. Stibnite, native antimony and trace arsenopyrite are disseminated through the K-feldspar-rich lode schist. These are intergrown with pyrite and pyrrhotite and chalcopyrite. Mineralisation outside the typical Big Bell host rocks (KPSH), for example 1,600N and Shocker, also display a very strong W-As-Sb geochemical halo.
		Numerous gold deposits occur within the Cuddingwarra Project area, the majority of which are hosted within the central mafic-ultramafic ± felsic porphyry sequence. Within this broad framework, mineralisation is shown to be spatially controlled by competency contrasts across, and flexures along, layer-parallel D2 shear zones, and is maximised when transected by corridors of northeast striking D3 faults and fractures.
		The Great Fingall Dolerite hosts the majority gold mineralisation within the portion of the greenstone belt proximal to Cue (The Day Dawn Project Area). Unit AGF3 is the most brittle of all the five units and this characteristic is responsible for its role as the most favourable lithological host to gold mineralisation in the Greenstone Belt. FGO
		The Fortnum deposits are Paleoproterozoic shear-hosted gold deposits within the Fortnum Wedge, a localised thrust duplex of Narracoota Formation within the overlying Ravelstone Formation. Both stratigraphic formations comprise part of the Bryah Basin in the Capricorn Orogen, Western Australia.
		The Horseshoe Cassidy deposits are hosted within the Ravelstone Formation (siltstone and argillite) and Narracoota Formation (highly altered, moderate to strongly deformed mafic to ultramafic rocks). The main zone of mineralisation is developed within a horizon of highly altered magnesian basalt. Gold mineralisation is associated with strong vein stock works that are confined to the altered mafic. Alteration consists of two types: stockwork proximal silica-carbonate-fuchsite-haematite-pyrite and distal silica-haematite-carbonate+/-chlorite.
		The Peak Hill district represents remnants of a Proterozoic fold belt comprising highly deformed trough and shelf sediments and mafic / ultramafic volcanics, which are generally moderately metamorphosed (except for the Peak Hill Metamorphic Suite).

Criteria	JORC Code Explanation	Commentary
		HG0
		The Higginsville Gold Operation is located in the Eastern Goldfields Superterrane of the Archean Yilgarn Craton. The bulk of the Higginsville tenement package is located almost entirely within the well-mineralised Kalgoorlie Terrane, between the gold mining centres of Norseman and St Ives. HGO can be sub-divided into seven major geological domains: Trident Line of Lode, Chalice, Lake Cowan, Southern Paleo-channels, Mt Henry, Polar Bear Group and Spargos Project area.
		Majority of mineralisation along the Trident Line of Lode are hosted within the Poseidon gabbro and high-MgO dyke complexes in the south. The Poseidon Gabbro is a thick, weakly-differentiated gabbroic sill, which strikes north-south and dips 60° to the east, is over 500 m thick and 2.5 km long. The mineralisation is hosted within or marginal to quartz veining and is structurally and lithologically controlled.
		The Chalice Deposit is located within a north-south trending, 2 km to 3 km wide greenstone terrane, flanked on the west calc-alkaline granitic rocks of the Boorabin Batholith and to the east by the Pioneer Dome Batholith. The dominant unit that hosts gold mineralisation is a fine grained, weak to strongly foliated amphibole-plagioclase amphibolite, with a typically lepidoblastic (mineralogically aligned and banded) texture. It is west-dipping and generally steep, approximately 60° to 75°.
		The Lake Cowan project area is situated near the centre of a regional anticline between the Zuleika and Lefroy faults, with the local geology of the area made more complex by the intrusion of the massive Proterozoic Binneringie dyke. The majority of mineralisation at the Lake Cowan Mining Centre is hosted within an enclave of Archaean material surrounded by the Binneringie dyke.
		 Mineralised zones within the Southern Paleo Channels network comprise both placer gold, normally near the base of the channel-fill sequences, and chemically-precipitated secondary gold within the channel-fill materials and underlying saprolite. These gold concentrations commonly overlie, or are adjacent to, primary mineralised zones within Archaean bedrock.
		• The Mount Henry Project covers 347km2 of the prolific South Norseman-Wiluna Greenstone belt of the Eastern Goldfields in Western Australia. Although the greenstone rocks from the Norseman area can be broadly correlated with those of the Kalgoorlie – Kambalda region they form a distinct terrain which is bounded on all sides by major regional shears. The Norseman Terrane has prominent banded iron formations which distinguish it from the Kalgoorlie–Kambalda Terrane. The Mount Henry gold deposit is hosted by a silicate facies BIF unit within the Noganyer Formation. Gold mineralisation is predominantly hosted by the silicate facies BIF unit but is also associated with minor meta-basalt and dolerite units that were mostly emplaced in the BIF prior to mineralisation. The footwall to the BIF is characterised by a sedimentary schistose unit and the hanging wall by the overlying dolerites of the Woolyeener Formation. The Mount Henry gold deposit is classified as an Archean, orogenic shear hosted deposit. The main lode is an elongated, shear-hosted body, 1.9km long by 6 – 10 metres wide and dips 65-75 degrees towards the west.
		The Polar Bear project is situated within the Archaean Norseman-Wiluna Belt which locally includes basalts, komatiites, metasediments, and felsic volcaniclastics. The primary gold mineralisation is related to hydrothermal activity during multiple deformation events. Indications are that gold mineralisation is focused on or near to the stratigraphic boundary between the Killaloe and Buldania Formation.

Criteria	JORC Code Explanation	Commentary
		The Spargos Project occurs within Coolgardie Domain of the Kalgoorlie Terrane. The area is bounded by the Zuleika Shear to the east and the Kunanalling Shear to the west. The geological setting comprises tightly-folded north-south striking ultramafic and mafic volcanic rocks at the northern closure Widgiemooltha Dome. The project lies on the general trend of the Kunanalling / Karramindie Shear corridor, a regional shear zone that hosts significant mineralisation to the north at Ghost Crab (Mount Marion), Wattle Dam to the south, the Penfolds group and Kunanalling. The regional prospective Zuleika Shear lies to the east of the project. The tenements are prospective for vein and shear hosted gold deposits as demonstrated by Spargos Reward and numerous other gold workings and occurrences. Gold mineralisation at Spargos Reward is hosted by a coarse-grained pyrite-arsenopyrite lode in quartz-sericite schists, between strongly biotitic altered greywacke to the east and quartz-sericite-fuchsite-pyrite altered felsic tuff to the west. Gold mineralisation is associated with very little quartz veining which is atypical for many deposits in region. The Spargos Reward setting has been described variously as a low-quartz sulphidic mesothermal gold system or as a Hemlo style syn-sedimentary occurrence.
		мдо
		MGO is located in the Achaean Murchison Province, a granite-greenstone terrane in the northwest of the Yilgarn Craton. Greenstone belts trending north-northeast are separated by granite-gneiss domes, with smaller granite plutons also present within or on the margins of the belts.
		The Paddy's Flat area is located on the western limb of a regional fold, the Polelle Syn- cline, within a sequence of mafic to ultramafic volcanics with minor interflow sediments and banded iron-formation. The sequence has also been intruded by felsic porphyry dykes prior to mineralisation. Mineralisation is located along four sub-parallel trends at Paddy's Flat which can be summarized as containing three dominant mineralisation styles: Sulphide replacement BIF hosted gold. Quartz vein hosted shear-related gold. Quartz-carbonate-sulphide stockwork vein and alteration related gold.
		The Yaloginda area which host Bluebird – South Junction, is a gold-bearing Archaean greenstone belt situated ~15km south of Meekatharra. The deposits in the area are hosted in a strained and metamorphosed volcanic sequence that consists primarily of ultramafic and high-magnesium basalt with minor komatiite, peridotite, gabbro, tholeiitic basalt and interflow sediments. The sequence was intruded by a variety of felsic porphyry and intermediate sills and dykes.
		The Reedy's mining district is located approximately 15 km to the south-east to Meekatharra and to the south of Lake Annean. The Reedy gold deposits occur with- in a north-south trending greenstone belt, two to five kilometres wide, composed of volcano-sedimentary sequences and separated multiphase syn- and post-tectonic granitoid complexes. Structurally controlled the gold occur.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length.	 Tables containing drillhole collar, downhole survey and intersection data are included in the body of the announcement. No explorations results are being reported for Beta Hunt and Higginsville Operations.

Criteria	JORC Code Explanation	Commentary
	 If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 All results presented are length weighted. No high-grade cuts are used. Reported results contain no more than two contiguous metres of internal dilution below 0.5g/t. For Beta Hunt, a cut off of 1 g/t Au with maximum internal waste of 2m is used to define significant intercepts. Results are reported above a variety of gram / metre cut-offs dependent upon the nature of the hole. These are cut-offs are clearly stated in the relevant tables. Unless indicated to the contrary, all results reported are downhole width. Given restricted access in the underground environment the majority of drillhole intersections are not normal to the orebody.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known'). 	 Unless indicated to the contrary, all results reported are downhole width. Given restricted access in the underground environment the majority of drillhole intersections are not normal to the orebody.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Appropriate diagrams are provided in the body of the release if required.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	Appropriate balance in exploration results reporting is provided.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	There is no other substantive exploration data associated with this release.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Ongoing surface and underground exploration activities will be undertaken to support continuing mining activities at Westgold Gold Operations.

SECTION 3: ESTIMATION AND REPORTING OF MINERAL RESOURCES

(Criteria listed in section 1, and where relevant in section 2, also apply to this section)

Criteria	JORC Code Explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 The database used for the estimation was extracted from the Westgold's DataShed database management system stored on a secure SQL server. As new data is acquired it passes through a validation approval system designed to pick up any significant errors before the information is loaded into the master database.
Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case.	Mr. Russell visits Westgold Gold Operations regularly.
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 Mining in the Murchison and Goldfields districts has occurred since 1800's providing significant confidence in the currently geological interpretation across all projects. Confidence in the geological interpretation is high. The current geological interpretation has been a precursor to successful mining over the years and forms the basis for the long-term life of mine plan (LOM). The data and assumptions used do suggest that any significant alternative geological interpretation is unlikely. Geology (lithological units, alterations, structure, veining) have been used to guide and control Mineral Resource estimation. No alternative interpretations are currently considered viable. Geological interpretation of the deposit was carried out using a systematic approach to ensure that the resultant estimated Mineral Resource figure was both sufficiently constrained, and representative of the expected sub-surface conditions. In all aspects of resource estimation the factual and interpreted geology was used to guide the development of the interpretation. Geological matrixes were established to assist with interpretation and construction of the estimation domains. The structural regime is the dominant control on geological and grade continuity in the Murchison and Goldfields. Lithological factors such as rheology contrast are secondary controls on grade distribution. Low-grade stockpiles are derived from previous mining of the mineralisation styles outlined
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	 above. BHO A-Zone extends over 2.2km strike length and is modelled to a vertical depth of 960m. It has variable thickness from 2m to 20m thick. Western Flanks has a strike extent of 1.8km and is modelled to a vertical extent of 450m, with average thickness of the shear around 10m. Larkin extends over 1.1km in strike length and is modelled to 400m vertical extent, with variable thickness ranging from 2m to 15m thick. Mason has a strike extent of 1.1km and is modelled to 455m vertical extent with variable thickness between 7 to 15m. Fletcher has a strike extent of 2 km and is modelled over a 800m vertical extent with variable thickness of individual lodes over a 500m lateral extent.

Criteria	JORC Code Explanation	Commentary
		CGO
		• The Big Bell Trend is mineralised a strike length of >3,900m, a lateral extent of up +50m and a depth of over 1,500m.
		• Great Fingall is mineralised a strike length of >500m, a lateral extent of >600m and a depth of over 800m.
		• Black Swan South is mineralised a strike length of >1,700m, a lateral extent of up +75m and a depth of over 300m.
		FGO
		• The Yarlarweelor mineral resource extends over 1,400m in strike length, 570m in lateral extent and 190m in depth.
		• The Tom's and Sam's mineral resource extends over 650m in strike length, 400m in lateral extent and 130m in depth.
		• The Eldorado mineral resource extends over 240m in strike length, 100m in lateral extent and 100m in depth.
		HGO
		 Trident, Fairplay, Vine and Two Boy's deposits form the Line of Lode system and extends over 5km of strike.
		• Chalice mineralisation has been defined over a strike length of 700m, a lateral extent of 200m and a depth of 650m.
		 The Pioneer resource area extends over a strike length of 860m from 6,474,900mN to 6,475,760mN. The multiple NS striking parallel lodes occur within a narrow EW extent of 190m from 374,970mE to 375,160mE. Mineralisation has been modelled from surface at 291mRL to a vertical depth 208m to the 83mRL.
		 Southern paleochannels gold mineralisation is interpreted to have a strike length around 4km and is predominantly flat lying.
		 The Wills deposit extends over 900m in a ENE-WSW direction and is up to 200m wide. Pluto is confirmed between sections 6,480,100mN and 6,481,800mN. Nanook is confirmed between sections 6,469,300mN and 6,472,500mN.
		• Lake Cowan: Atreides mineralisation is contained within flat lying lodes located within the weathered zone. The mineralisation strike extents vary between 100m to 300m long, with an average thickness of 2 to 3 m thick. Josephine has a strike length greater than 450m and >10m across strike and modelled to >90m at depth. Louis has a strike extent of 310m long and is interpreted to a depth of 170m below surface. Napoleon: ~220m strike and up to ~90m (individual mineralised lodes maximum of 12m) across strike to an interpreted depth of ~80m m below surface. Rose's dimension is 150m x 120m (X, Y), to an interpreted depth of +20-25m below surface.
		 The Spargos resource area extends over a strike length of 330m from 6,542,980mN to 6,543,310mN. The parallel lodes occur within a narrow EW extent of 95m from 354,120mE to 354,215mE. Mineralisation has been modelled from surface at 425mRL to a vertical depth 525m to -100mRL.

Criteria JORC Code Explanation	Commentary
The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters, maximum distance of extrapolation from data points. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. The process of validation, the checking process used, the comparison of model data to drillhole data, and use of reconciliation data if available.	MGO The Paddy's Flat Trend is mineralised a strike length of >3,900m, a lateral extent of up +230m and a depth of over 500m. Bluebird – South Junction is mineralised a strike length of >1,800m, a lateral extent of up +50m and a depth of over 500m. Triton – South Emu is mineralised a strike length of >1,100m, a lateral extent of several metres and a depth of over 500m. Triton – South Emu is mineralised a strike length of >1,100m, a lateral extent of several metres and a depth of over 500m. STOCKPILES Low-grade stockpiles are of various dimensions. All modelling and estimation work undertaken by Westgold is carried out in three dimensions via Surpac Vision. After validating the drillhole data to be used in the estimation, interpretation of the orebody is undertaken in sectional and / or plan view to create the outline strings which form the basis of the three-dimensional representation of the sub-surface mineralised body is undertaken in sectional representation of the sub-surface mineralised body. Drillhole intersections within the mineralised body are defined, these intersections are then used to flag the appropriate sections of the drillhole database tables for compositing purposes. Drillholes are subsequently composited to allow for grade estimation. In all aspects of resource estimation, the factual and interpreted geology was used to guide the development of the interpretation. Once the sample data has been composited, a statistical analysis is undertaken to assist with determining estimation search parameters, top-cuts etc. Variographic analysis of individual domains is undertaken to assist with determining appropriate search parameters. Which are then incorporated with observed geological and geometrical features to determine the most appropriate search parameters. An empty block model is then created for the area of interest. This model contains attributes set at background values for the various elements of interest. This model contains attributes set at background values for the various eleme

Criteria	JORC Code Explanation	Commentary
		 The resource is then depleted for mining voids and subsequently classified in line with JORC guidelines utilising a combination of various estimation derived parameters and geological / mining knowledge. This approach has proven to be applicable to Westgold's gold assets. Estimation results are routinely validated against primary input data, previous estimates and mining output. Good reconciliation between mine claimed figures and milled figures are routinely achieved during production.
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	Tonnage estimates are dry tonnes.
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	The cut off grades used for the reporting of the Mineral Resources have been selected based on the style of mineralisation, depth from surface of the mineralisation and the most probable extraction technique and associated costs.
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	Variable by deposit. No mining dilution or ore loss has been modelled in the resource model or applied to the reported Mineral Resource.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	Not considered for Mineral Resource. Applied during the Reserve generation process.
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	Westgold operates in accordance with all environmental conditions set down as conditions for grant of the respective leases.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc.), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 Bulk density of the mineralisation is variable and is for the most part lithology and oxidation rather than mineralisation dependent. A large suite of bulk density determinations has been carried out across the project areas. The bulk densities were separated into different weathering domains and lithological domains. A significant past mining history has validated the assumptions made surrounding bulk density.

Criteria	JORC Code Explanation	Commentary
Classification	The basis for the classification of the Mineral Resources into varying confidence categories.	Resources are classified in line with JORC guidelines utilising a combination of various estimation derived parameters, input data and geological / mining knowledge.
	Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and	 Drillhole spacing to support classification varies based upon lode characteristics. Measured ranges from 15-35m, Indicated from 10-180m and Inferred from 10-200m. This approach considers all relevant factors and reflects the Competent Person's view of
	distribution of the data).	the deposit.
	Whether the result appropriately reflects the Competent Person's view of the deposit.	
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	Resource estimates are peer reviewed by the Corporate technical team.
		No external reviews have been undertaken.
Discussion of relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.	 All currently reported resource estimates are considered robust, and representative on both a global and local scale. A continuing history of mining with good reconciliation of mine claimed to mill recovered provides confidence in the accuracy of the estimates.
	The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.	
	These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.	

SECTION 4: ESTIMATION AND REPORTING OF ORE RESERVES

(Criteria listed in section 1, and where relevant in sections 2 and 3, also apply to this section)

Criteria	JORC Code Explanation	Commentary
Mineral Resource estimate for conversion to Ore Reserves	Description of the Mineral Resource estimate used as a basis for the conversion to an Ore Reserve. Clear statement as to whether the Mineral Resources are reported additional to, or inclusive of, the Ore Reserves.	Estimate.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	Mr. Leigh Devlin has over 10 years' experience in the mining industry. Mr. Devlin visits the mine sites on a regular basis and is one of the primary engineers involved in mine planning, site infrastructure and project management.
Study status	 The type and level of study undertaken to enable Mineral Resources to be converted to Ore Reserves. The Code requires that a study to at least Pre-Feasibility Study level has been undertaken to convert Mineral Resources to Ore Reserves. Such studies will have been carried out and will have determined a mine plan that is technically achievable and economically viable, and that material Modifying Factors have been considered 	production occurring throughout 1800's, 1900's and 2000's. Processing at the Goldfields operations has occurred intermittently since the 1980's and continuously since 2008 at Higginsville. • Various mineralisation styles and host domains have been mined since discovery. Mining during
Cut-off parameters	The basis of the cut-off grade(s) or quality parameters applied.	 Underground Mines - Cut off grades are used to determine the economic viability of the convertible Mineral Resources Estimates. COG for underground mines incorporate OPEX development and production costs, grade control, haulage, milling, administration, along with state and private royalty conditions, Where an individual mine has different mining methods and or various orebody style, COG calculations are determined for each division. These cuts are applied to production shapes (stopes) as well as high grade development. Additionally, an incremental COG is applied to low grade development, whereby access to a high grade area is required. On the basis of above process, the COG is split into Mine Operating COG (incremental grade) 2.1gt and Fully Costed COG (inclusive of capital) 2.3gt. Open Pit Mines - The pit rim cut-off grade (COG) was determined as part of the Ore Reserve. The pit rim COG accounts for grade control, haulage, milling, administration, along with state and private royalty conditions. This cost profile is equated against the value of the mining block in
		terms of recovered metal and the expected selling price. The COG is then used to determine whether or not a mining block should be delivered to the treatment plant for processing, stockpiled as low- grade or taken to the waste dump. On the basis of above process, COGs for the open pit mines range from 0.8g/t (whereby the Mill is local to mine and Mill recoveries are greater than 90%) to 1.4g/t (regional pits with low Mill recoveries). Stockpile COG – A marginal grade was determined for each stockpile inventory to ensure it was economically viable. The COG accounts for haulage, milling, administration, along with state and private royalty conditions. Each pile honoured its Mill recovery percentage.

Criteria	JORC Code Explanation	Commentary
		In large, disseminated orebodies sub level caving, sub level open stoping or single level bench stoping production methodologies are used.
		 In narrow vein laminated quartz hosted domains, a conservative narrow bench style mining method is used.
		 In narrow flat dipping deposits, a flat long hole process is adopted (with fillets in the footwall for rill angle) and or jumbo stoping.
		Stope shape parameters have been based on historical data (where possible) or expected stable hydraulic radius dimensions.
		 Stope inventories have been determined by cutting the geological wireframe at above the area specific COG and applying mining dilution and ore loss factors. The ore loss ratio accounts for pillar locations between the stopes (not operational ore loss) whilst dilution allows for conversion of the geological wireframe into a minable shape (planned dilution) as well as hangingwall relaxation and blasting overbreak (unplanned dilution).
		Depending upon the style of mineralisation, sub level interval, blasthole diameters used and if secondary support is installed, total dilution ranges from 10 to 35%.
		 Minimum mining widths have been applied in the various mining methods. The only production style relevant to this constraint is 'narrow stoping' – where the minimum width is set at 1.5m in a 17.0m sub level interval.
		 Mining operational recovery for the underground mines is set at 85-100% due to the use of remote loading units as well as paste filling activities. Mining recovery is not inclusive of pillar loss – insitu mineralised material between adjacent stope panels.
		Stope shape dimensions vary between the various methods. Default hydraulic radii (HR) are applied to each method and are derived either from historical production or geotechnical reports / recommendations. Where no data or exposure is available conservative HR values are used based on the contact domain type.
		 Mining sequence is included in the mine scheduling process for determining the economic evaluation and takes into account available operating time and mining equipment size and performance.
Metallurgical factors or	The metallurgical process proposed and the appropriateness of that	вно
assumptions	process to the style of mineralisation.Whether the metallurgical process is well-tested technology or novel in	 A long history of processing through several CIL processing existing facilities demonstrates the appropriateness of the process to the styles of mineralisation considered.
	nature. The nature, amount and representativeness of metallurgical test work	No deleterious elements are considered, the long history of processing has shown this to be not a material concern.
	undertaken, the nature of the metallurgical domaining applied and the	CGO
	corresponding metallurgical recovery factors applied.	CGO has an existing conventional CIL processing plant.
	 Any assumptions or allowances made for deleterious elements. The existence of any bulk sample or pilot scale test work and the 	 The plant has a nameplate capacity of 1.4Mtpa though this can be varied between 1.2-1.6Mtpa pending rosters and material type.
	degree to which such samples are considered representative of the orebody as a whole.	Gold extraction is achieved using two staged crushing, ball milling with gravity concentration and Carbon in Leach.
	For minerals that are defined by a specification, has the ore reserve estimation been based on the appropriate mineralogy to meet the specifications?	, , , , , , , , , , , , , , , , , , , ,
		No deleterious elements are considered, as a long history of processing has shown this to be not a material concern.
		For the Ore Reserve, Plant recoveries of 80-93% have been utilised.

Criteria	JORC Code Explanation	Commentary
		FGO
		FGO has an existing conventional CIL processing plant – which has been operational in various periods since the late 1980's. The plant has a nameplate capacity of 1.0Mtpa though this can be varied between 0.8-1.2Mtpa pending rosters and material type.
		An extensive database of historical CIL recoveries as well as detailed metallurgical test work is available for the various deposits, and these have been incorporated into the COG analysis and financial models.
		For the Ore Reserve, Plant recoveries of 93-95% have been utilised.
		ндо
		Gold extraction is achieved using staged crushing, ball milling with gravity concentration and Carbon in Leach. The Higginsville plant has operated since 2008.
		Treatment of ore is via conventional gravity recovery / intensive cyanidation and CIL is applied as industry standard technology.
		Additional test-work is instigated where notable changes to geology and mineralogy are identified. Small scale batch leach tests on primary Louis ore have indicated lower recoveries (80%) associated with finer gold and sulphide mineralisation.
		There have been no major examples of deleterious elements affecting gold extraction levels or bullion quality. Some minor variations in sulphide mineralogy have had short-term impacts on reagent consumptions.
		No bulk sample testing is required whilst geology/mineralogy is consistent based on treatment plant performance.
		MGO
		MGO has an existing conventional CIL processing plant – which has been operational in various periods since the late 1980's.
		The plant has a nameplate capacity of 1.6Mtpa though this can be varied between 1.2-1.8Mtpa pending rosters and material type.
		Gold extraction is achieved using single stage crushing, SAG and ball milling with gravity concentration and Carbon in Leach.
		A long history of processing through the existing facility demonstrates the appropriateness of the process to the styles of mineralisation considered.
		No deleterious elements are considered, as a long history of processing has shown this to be not a material concern.
		For the Ore Reserve, Plant recoveries of 85-92% have been utilised.
Environmental	The status of studies of potential environmental impacts of the mining and processing operation. Details of waste rock characterisation and the consideration of potential sites, status of design options considered and, where applicable, the status of approvals for process	 BHO operates under and in compliance with a number of operating environmental plans, which cover its environmental impacts and outputs as well as reporting guidelines / frequencies.
	residue storage and waste dumps should be reported.	Various Reserve inventories do not have current DMP / DWER licenses – though there are no abnormal conditions / factors associated with these assets which the competent person sees as potentially threatening to the particular project.
		The operation is frequently inspected by the regulatory authorities of DMP and DWER with continual feedback on environmental best practice and reporting results.
		Flood Management, Inclement Weather and Traffic Management Plans existing for the operation to minimise the risks of environmental impacts.
		 Standard Operating Procedures for the transfer of hazardous materials and restocking of Dangerous Goods existing on site to mitigate the risk of these materials entering the environment.

CGO

- CGO operates under and in compliance with a number of operating environmental plans, which cover its environmental impacts and outputs as well as reporting guidelines / frequencies.
- Various Reserve inventories do not have current DMP / DWER licenses though there are no abnormal conditions / factors associated with these assets which the competent person sees as potentially threatening to the particular project.
- The operation is frequently inspected by the regulatory authorities of DMP and DWER with continual feedback on environmental best practice and reporting results.
- Flood Management, Inclement Weather and Traffic Management Plans existing for the operation to minimise the risks of environmental impacts.
- Standard Operating Procedures for the transfer of hazardous materials and restocking of Dangerous Goods existing on site to mitigate the risk of these materials entering the environment.

FGO

- FGO operates under and in compliance with a number of operating environmental plans, which cover its environmental impacts and outputs as well as reporting guidelines / frequencies.
- Various Reserve inventories do not have current DMP / DWER licenses though there are no abnormal conditions / factors associated with these assets which the competent person sees as potentially threatening to the particular project.
- The operation is frequently inspected by the regulatory authorities of DMP and DWER with continual feedback on environmental best practice and reporting results.
- Flood Management, Inclement Weather and Traffic Management Plans existing for the operation to minimise the risks of environmental impacts.
- Standard Operating Procedures for the transfer of hazardous materials and restocking of Dangerous Goods existing on site to mitigate the risk of these materials entering the environment.

HGO

- HGO operates under and in compliance with a number of operating environmental plans, which
 cover its environmental impacts and outputs as well as reporting guidelines / frequencies.
- Various Reserve inventories do not have current DMP / DWER licenses though there are no abnormal conditions / factors associated with these assets which the competent person sees as potentially threatening to the particular project.
- The operation is frequently inspected by the regulatory authorities of DMP and DWER with continual feedback on environmental best practice and reporting results.
- Flood Management, Inclement Weather and Traffic Management Plans existing for the operation to minimise the risks of environmental impacts.
- Standard Operating Procedures for the transfer of hazardous materials and restocking of Dangerous Goods existing on site to mitigate the risk of these materials entering the environment.

MGO

- MGO operates under and in compliance with a number of operating environmental plans, which
 cover its environmental impacts and outputs as well as reporting guidelines / frequencies.
- Various Reserve inventories do not have current DMP / DWER licenses though there are no abnormal conditions / factors associated with these assets which the competent person sees as potentially threatening to the particular project.
- The operation is frequently inspected by the regulatory authorities of DMP and DWER with continual feedback on environmental best practice and reporting results.
- Flood Management, Inclement Weather and Traffic Management Plans existing for the operation to minimise the risks of environmental impacts.
- Standard Operating Procedures for the transfer of hazardous materials and restocking of Dangerous Goods existing on site to mitigate the risk of these materials entering the environment.

fland for rly for bulk which the BHO is currently active and have substantial infrastructure in place including a large amount of underground infrastructure, major electrical, ventilation and pumping networks.
Airstrip facilities are available at nearby Kambalda.
CGO
CGO has an operating plant and tailings storage facility, along with extensive mechanical and electrical maintenance facilities.
The site also includes existing administration buildings as well as a 250-man accommodation camp facility.
Power is provided by onsite diesel generation, with potable water sourced from nearby bore water (post treatment).
Communications and roadways are existing.
Airstrip facilities are available at the local Cue airstrip (20km).
FGO
 FGO has an operating plant and tailings storage facility, along with extensive mechanical and electrical maintenance facilities.
The site also includes existing administration buildings as well as a 200-man accommodation camp facility.
 Power is provided by onsite diesel generation, with potable water sourced from nearby bore water (post treatment).
Communications and roadways are existing.
Airstrip facilities are available on site.
HGO
 HGO is currently active and have substantial infrastructure in place including a large amount of underground infrastructure, major electrical, ventilation and pumping networks. The main Higginsville location has an operating CIL plant a fully equipped laboratory, extensive workshop, administration facilities and a 350 person single person quarters nearby.
Infrastructure required for open production is also in place.
Airstrip facilities are available at nearby Kambalda.
MGO
 MGO has an operating plant and tailings storage facility, along with extensive mechanical and electrical maintenance facilities.
The site also includes existing administration buildings as well as a 300-man accommodation camp facility.
Power is provided by onsite diesel generation, with potable water sourced from nearby bore water (post treatment).
Communications and roadways are existing. Abstract of cellities are seen that the least Manufacture are single (45 least).
Airstrip facilities are available at the local Meekatharra airstrip (15km). ted capital BHO
1 2.10
 Processing costs are based on actual cost profiles with variations existing between the various oxide states.
 Site G&A and portioned corporate overheads are included within the analysis (based upon
previous Budget years actuals).
Mining costs are derived primarily from the current contractor and owner-operator cost profiles in the underground environment.
in the underground environment.
• For the underground environment, if not site-specific mining rates are available, an appropriately selected operating mine is used for the basis of cost profiling.

Criteria	JORC Code Explanation	Commentary
Criteria	JORC Code Explanation	 Geology and Grade Control costs are incorporated in the overall cost profile and are based upon previously reconciled Budgetary forecasts. Haulage costs used are either contractual rates or if in the case where a mine has none, a generic cost per tkm unit rate is utilised. Both state government and private royalties are incorporated into costings as appropriate. CGO Processing costs are based on actual cost profiles with variations existing between the various oxide states.
		 Site G&A and portioned corporate overheads are included within the analysis (based upon previous Budget years actuals). Mining costs are derived primarily from the current contractor and owner-operator cost profiles in the underground environment. For open pits where no current mining cost profiles are available for a forecasted Reserve, a historically 'validated' pit cost matrix is used – with variation allowances for density, fuel price and gear size. For the underground environment, if not site-specific mining rates are available, an appropriately selected operating mine is used for the basis of cost profiling.
		 Geology and Grade Control costs are incorporated in the overall cost profile and are based upon previously reconciled Budgetary forecasts. Haulage costs used are either contractual rates or if in the case where a mine has none, a generic cost per tkm unit rate is utilised. Both state government and private royalties are incorporated into costings as appropriate. FGO
		 Processing costs are based on actual cost profiles with variations existing between the various oxide states. Site G&A and portioned corporate overheads are included within the analysis (based upon previous Budget years actuals). Mining costs are derived primarily from the current contractor and owner-operator cost profiles in the underground environment. For open pits where no current mining cost profiles are available for a forecasted Reserve, a historically 'validated' pit cost matrix is used – with variation allowances for density, fuel price and gear size. For the underground environment, if not site-specific mining rates are available, an appropriately selected operating mine is used for the basis of cost profiling. Geology and Grade Control costs are incorporated in the overall cost profile and are based upon previously reconciled Budgetary forecasts. Haulage costs used are either contractual rates or if in the case where a mine has none, a generic cost per tkm unit rate is utilised. Both state government and private royalties are incorporated into costings as appropriate. HGO Processing costs are based on actual cost profiles with variations existing between the various
		 Processing costs are based on actual cost profiles with variations existing between the various oxide states. Site G&A and portioned corporate overheads are included within the analysis (based upon previous Budget years actuals). Mining costs are derived primarily from the current contractor and owner-operator cost profiles in the underground environment. For open pits where no current mining cost profiles are available for a forecasted Reserve, a historically 'validated' pit cost matrix is used – with variation allowances for density, fuel price and gear size.

Criteria	JORC Code Explanation	Commentary
		 For the underground environment, if not site-specific mining rates are available, an appropriately selected operating mine is used for the basis of cost profiling. Geology and Grade Control costs are incorporated in the overall cost profile and are based upon previously reconciled Budgetary forecasts. Haulage costs used are either contractual rates or if in the case where a mine has none, a generic cost per tkm unit rate is utilised. Both state government and private royalties are incorporated into costings as appropriate.
		MGO
		 Processing costs are based on actual cost profiles with variations existing between the various oxide states. Site G&A and portioned corporate overheads are included within the analysis (based upon previous Budget years actuals). Mining costs are derived primarily from the current contractor and owner-operator cost profiles in the underground environment. For open pits where no current mining cost profiles are available for a forecasted Reserve, a historically (validated) sit cost matrix is used, with varieties allowages for density fuel price.
		 historically 'validated' pit cost matrix is used – with variation allowances for density, fuel price and gear size. For the underground environment, if not site-specific mining rates are available, an appropriately selected operating mine is used for the basis of cost profiling. Geology and Grade Control costs are incorporated in the overall cost profile and are based upon previously reconciled Budgetary forecasts. Haulage costs used are either contractual rates or if in the case where a mine has none, a generic cost per tkm unit rate is utilised.
Revenue factors	The derivation of, or assumptions made regarding revenue factors	Both state government and private royalties are incorporated into costings as appropriate. Mine Revenue, COGs, open pit optimisation and royalty costs are based on the long-term
Nevellue lactors	 including head grade, metal or commodity price(s) exchange rates, transportation and treatment charges, penalties, net smelter returns, etc. The derivation of assumptions made of metal or commodity price(s), for the principal metals, minerals and co-products. 	forecast of A\$3,000/oz. No allowance is made for silver by-products.
Market assessment	 The demand, supply and stock situation for the particular commodity, consumption trends and factors likely to affect supply and demand into the future. A customer and competitor analysis along with the identification of likely market windows for the product. Price and volume forecasts and the basis for these forecasts. For industrial minerals the customer specification, testing and acceptance requirements prior to a supply contract. 	
Economic	 The inputs to the economic analysis to produce the net present value (NPV) in the study, the source and confidence of these economic inputs including estimated inflation, discount rate, etc. NPV ranges and sensitivity to variations in the significant assumptions and inputs. 	operating cash generating model. Capital costs have been included thereafter to determine an economic outcome.

Criteria	JORC Code Explanation	Commentary
Social	The status of agreements with key stakeholders and matters leading to social licence to operate.	BHO BHO is fully permitted and a major contributor to the local and regional economy. It has no external pressures that impact its operation or which could potentially jeopardise its continuous operation. CGO
		 CGO is fully permitted and a major contributor to the local and regional economy. It has no external pressures that impact its operation or which could potentially jeopardise its continuous operation. As new open pits or underground operations develop the site will require separate environmental approvals from the different regulating bodies. Where required, the operation has a Native Title and Pastoral Agreement.
		FGO
		FGO is fully permitted and a major contributor to the local and regional economy. It has no external pressures that impact its operation or which could potentially jeopardise its continuous operation.
		 As new open pits or underground operations develop the site will require separate environmental approvals from the different regulating bodies. Where required, the operation has a Native Title and Pastoral Agreement.
		ндо
		 HGO is fully permitted and a major contributor to the local and regional economy. It has no external pressures that impact its operation or which could potentially jeopardise its continuous operation. •As new open pits or underground operations develop the site will require separate
		environmental approvals from the different regulating bodies.
		 MGO MGO is fully permitted and a major contributor to the local and regional economy. It has no external pressures that impact its operation or which could potentially jeopardise its continuous operation. As new open pits or underground operations develop the site will require separate environmental approvals from the different regulating bodies. Where required, the operation has a Native Title and Pastoral Agreement.
Other	To the extent relevant, the impact of the following on the project and/or	BHO is an active mining project.
	 on the estimation and classification of the Ore Reserves: Any identified material naturally occurring risks. The status of material legal agreements and marketing arrangements. The status of governmental agreements and approvals critical to the viability of the project, such as mineral tenement status, and government and statutory approvals. There must be reasonable grounds to expect that all necessary Government approvals will be received within the timeframes anticipated in the Pre-Feasibility or Feasibility study. Highlight and discuss the materiality of any unresolved matter that is dependent on a third party on which extraction of the reserve is 	 CGO is an active mining project. FGO is an active mining project. HGO is an active mining project. MGO is an active mining project.

Criteria	JORC Code Explanation	Commentary
Classification	 The basis for the classification of the Ore Reserves into varying confidence categories. Whether the result appropriately reflects the Competent Person's view of the deposit. The proportion of Probable Ore Reserves that have been derived from Measured Mineral Resources (if any). 	 The basis for classification of the Mineral Resource into different categories is made in accordance with the recommendations of the JORC Code 2012. Measured Mineral Resources have a high level of confidence and are generally defined in three dimensions with accurately defined or normally mineralised developed exposure. Indicated Mineral Resources have a slightly lower level of confidence but contain substantial drilling and are in most instances capitally developed or well defined from a mining perspective. Inferred Mineral Resources always contain significant geological evidence of existence and are drilled, but not to the same density. There is no classification of any Mineral Resources that isn't drilled or defined by substantial physical sampling works. Some Measured Resources have been classified as Proven and some are defined as Probable Ore Reserves based on internal judgement of the mining, geotechnical, processing and or cost profile estimates. No Indicated Mineral Resources material has been converted into Proven Ore Reserve. The resultant Ore Reserve classification appropriately reflects the view of the Competent Person.
Audits or reviews	The results of any audits or reviews of Ore Reserve estimates.	 Ore Reserves inventories and the use of appropriate modifying factors are reviewed internally on an annual basis. Additionally, mine design and cost profiles are regularly reviewed by WGX operational quarterly reviews. Financial auditing processes, Dataroom reviews for asset sales / purchases and stockbroker analysis regularly 'truth test' the assumptions made on Ore Reserve designs and assumptions.
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Ore Reserve estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the reserve within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors which could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. Accuracy and confidence discussions should extend to specific discussions of any applied Modifying Factors that may have a material impact on Ore Reserve viability, or for which there are remaining areas of uncertainty at the current study stage. It is recognised that this may not be possible or appropriate in all circumstances. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	contained insitu gold (the Mineral Resources Estimate), it is the competent person's view that the consolidated Reserve inventory is highly achievable in entirety.

Appendix C – JORC 2012 Table 1– Nickel Division SECTION 1: SAMPLING TECHNIQUES AND DATA

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or spe specialised industry standard measurement tools appropriate to the min under investigation, such as down hole gamma sondes, or handheld instruments, etc.). These examples should not be taken as limiting the be meaning of sampling. Include reference to measures taken to ensure sample representivity an appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the P Report. In cases where 'industry standard' work has been done this would be related simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples which 3 kg was pulverised to produce a 30 g charge for fire assay'). In cases more explanation may be required, such as where there is coarsed that has inherent sampling problems. Unusual commodities or mineralistypes (e.g. submarine nodules) may warrant disclosure of det information. 	underground platforms. Historical surface RC samples (completed by WMC) intersect the mineralisation. HMR Drilling Services has carried out underground diamond drilling at Beta Hunt since 2016 and are currently utilising a fleet of Erebus M90 mobile underground diamond core rigs. Sampling is highly selective according to the visual nickel mineralisation observed by the geologist. Generally, sampling is between 0.1m to 1.2m intervals, though some historical sample intervals are noted to 0.06m. Diamond drill core is logged on site by geologists for lithology, alteration, mineralisation, and structures. Structural measurements, alpha and beta angles are taken on major lithological contacts, foliations, veins, and major fault zones. Multiple specific gravity ("SG") measurements are taken per hole in both ore and waste zones. Field geotechnicians record the Rock Quality Designation ("RQD") measure for every second drill hole. All drill holes are digitally photographed. NQ2 drill holes designated as resource definition or exploration are cut in half with the top
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air be auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or startube, depth of diamond tails, face-sampling bit or other type, whether cooriented and if so, by what method, etc.).	ndard companies and utilised predominantly diamond drilling of NQ2 diameter. All diamond core
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries results assessed. Measures taken to maximise sample recovery and ensure represent nature of the samples. Whether a relationship exists between sample recovery and grade and why sample bias may have occurred due to preferential loss/gain of fine/comaterial. 	Historical and current practice ensures all diamond core intervals are measured and recorded for rock quality designation (RQD) and core loss. Core blocks are utilised and placed at 1m core runs in the core trays. The average core recovery at the deposit is routinely >95%. ether Drill rigs are supervised by company geologists to ensure adequate sample returns are being
Logging	 Whether core and chip samples have been geologically and geotechnic logged to a level of detail to support appropriate Mineral Resource estimation mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or cost channel, etc.) photography. The total length and percentage of the relevant intersections logged 	ation, mineralisation and structure. Core has been logged in enough detail to allow for the relevant mineral resource estimation techniques to be employed.

Criteria	JORC Code Explanation	Commentary
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 back in the core tray. This is then transferred onto pallets and moved to the core yard library. All grade control drilling is sampled as whole core samples with a maximum 1m interval. Sample preparation has been completed by SGS laboratory at either Perth or Kalgoorlie facilities since 2016. Samples were dried and then crushed to 3mm and then split to generate samples between 1kg to 2.8kg. One split is forwarded to milling where it is pulverised to 90% passing 75um, the second split is retained as a crushed sample. Laboratory internal QA standards include replicates, split samples, and blanks which are randomly added to job batches.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	A 0.2g subsample was digested using a mixed acid before ICP analysis. Post 2016, analyses have been completed by SGS Laboratory in Perth where a 0.2g subsample of pulverised material is taken for ICP 4 acid digest and final analysis using ICP-OES. This process is considered appropriate. The acid digest is with nitric, hydrochloric, hydrofluoric, and perchloric acids to effect as near total solubility of the sample as possible.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	retained core (or viewing core photos where whole core was submitted for assay). If significant intersections are not supported by visual checks, samples are re-assayed to
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	

Criteria	JORC Code Explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The structural complexity of nickel mineralisation at Beta Hunt is reflected by closer spaced drill patterns. Nickel Mineral Resources are based on an initial 30m by 30m down to 10m x 10m spaced drill hole pattern. Subsequent drilling focuses on stepping out from a significant intercept to define any attenuated pinch out, basalt roll-over or fault offsetting the nickel mineralisation. The data spacing and distribution is sufficient to establish geological and grade continuity appropriate to the classification applied. The nickel lenses are highly visible and underground mapping confirms lens geometry and extent. Sampling of core varies between 0.2m to 1.2m or to geological contacts. Samples are not composited when submitted for analysis. Sample compositing (to 0.7m or 0.8m) was applied at Kappa and Delta lenses for estimation. All other nickel lenses utilised an 2D linear accumulation variable composited as a single full zone intercept.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	underground infrastructure constraints allow. Visual observation of the flat lying lens geometry during air leg mining verifies the sample orientation is effective.
Sample security	The measures taken to ensure sample security.	Sample security protocols in place aim to maintain the chain of custody of samples to prevent inadvertent contamination or mixing of samples, and to render active tampering as difficult as possible. Sampling is conducted by Westgold staff or contract employees under the supervision of site geologists. The work area and sample storage areas are covered by general site security video surveillance. Samples bagged in plastic sacks are collected by the laboratory transport contractor and driven to the Perth or Kalgoorlie laboratories.
Audits or reviews	The results of any audits or reviews of sampling techniques and data	Site generated resources and reserves and the parent geological data is routinely reviewed by the Westgold Corporate technical team. Routine visits to the certified laboratories are completed by senior personnel.

SECTION 2: REPORTING OF EXPLORATION RESULTS

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code Explanation	Commentary		
Mineral tenement and land tenure status				
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties	 Western Mining Corporation (WMC) first intersected nickel sulphide mineralisation at Red Hill in January 1966 after drilling to test a gossan outcrop grading 1% Ni and 0.3% Cu. This discovery led to delineation of the Kambalda Nickel Field where WMC identified 24 deposits hosted in structures that include the Kambalda Dome, Widgiemooltha Dome and Golden Ridge Greenstone Belt. The Hunt nickel deposit was discovered by WMC in March 1970, during routine traverse drilling over the south end of the Kambalda Dome. The discovery hole, KD262, intersected 2.0m grading 6.98% Ni. Portal excavation for a decline access began in June 1973. While the decline was being developed, the Hunt orebody was accessed from the neighbouring Silver Lake mine, via a 1.15km cross-cut on 700 level. Westgold work has generally confirmed the veracity of historic exploration data. 		

Criteria	JORC Code Explanation	Commentary
Geology	Deposit type, geological setting and style of mineralisation.	The Kambalda–St Ives region forms part of the Norseman–Wiluna greenstone belt which comprises regionally extensive volcano-sedimentary packages. These were extruded and deposited in an extensional environment at about 2,700–2,660 Ma. The mining district is underlain by a north-northwest trending corridor of basalt and komatiite rocks termed the Kambalda Dome. The iron-nickel mineralisation is normally accumulated within the thick Silver Lake Member of the Kambalda Komatiite Formation above, or on the contact with the dome structured Lunnon Basalt.
		Nickel mineralisation is hosted by talc-carbonate and serpentine altered ultramafic rocks. The deposits are ribbon-like bodies of massive, matrix and disseminated sulphides varying from 0.5 m to 4.0m in true thickness but averaging between 1.0 m and 2.0 m. Down dip widths range from 40m to 100m, and the grade of nickel ranges from below 1% to 20%. Major minerals in the massive and disseminated ores are pyrrhotite, pentlandite, pyrite, chalcopyrite, magnetite and chromite, with rare millerite and heazlewoodite generally confined to disseminated mineralisation. The hangingwall mineralisation tends to be higher tenor than the contact material. The range of massive ore grades in the hangingwall is between 10% Ni and 20% Ni while the range for contact ore is between 9% Ni and 12% Ni. The hangingwall mineralogy varies between an antigorite/chlorite to a talc/magnesite assemblage. The basalt mineralogy appears to conform to the amphibole, chlorite, plagioclase plus or minus biotite.
		Unlike other nickel deposits on the Kambalda Dome, the Beta Hunt system displays complex contact morphologies, which leads to irregular ore positions. The overall plunge of the deposits is shallow in a southeast direction, with an overall plunge length in excess of 1km. The individual lode positions have a strike length averaging 40m and a dip extent averaging 10m. The geometry of these lode positions vary in dip from 10° to the west to 80° to the east. The mineralisation within these lode positions is highly variable ranging from a completely barren contact to zones where the mineralisation is in excess of 10m in true thickness.
		The Hunt and Lunnon shoots are separated from the Beta and East Alpha deposits by the Alpha Island Fault. Hunt and Beta both occur on the moderately dipping western limb of the Kambalda Dome and are thought to be analogous. Similarly, Lunnon and East Alpha occur on the steeply dipping eastern limb of the dome and also have similar characteristics.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	,, s

Criteria	JORC Code Explanation	Commentary
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole 	
	 angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known'). 	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	activities at Westgold Gold Operations.

SECTION 3: ESTIMATION AND REPORTING OF MINERAL RESOURCES

(Criteria listed in section 1, and where relevant in section 2, also apply to this section)

Criteria	JORC Code Explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Miner Resource estimation purposes. Data validation procedures used. 	 The database used for the estimation was extracted from the Westgold's DataShed database management system stored on a secure SQL server. As new data is acquired it passes through a validation approval system designed to pick up any significant errors before the information is loaded into the master database.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	Mr. Russell visits Westgold Gold Operations regularly.
Geological interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.	 Confidence in the interpretations is high as the Ni sulphides have been mined since 1974 and the structural setting is well understood. Mineralisation is hosted within and adjacent to volcanic channels that sit at the stratigraphic base of the Kambalda Komatiite. Nickel sulphides are within narrow troughs that plunge gently to the south.
	Nature of the data used and of any assumptions made. The effect if any of alternative interpretations on Mineral Resource estimation.	The mineralisation was interpreted using diamond core drilled primarily from underground locations
	 The effect, if any, of alternative interpretations on Mineral Resource estimation The use of geology in guiding and controlling Mineral Resource estimation. 	The current interpretations have been visually validated through underground mining so alternative interpretations are not considered viable.
	The factors affecting continuity both of grade and geology.	Geological logging of the ultramafic / basalt contact, and the visible Ni sulphides is used to define the mineralisation wireframes used in the Mineral Resource estimation.
		Geological matrixes were established to assist with interpretation and construction of the estimation domains.
		The Ni deposits occur within troughs on both the east and west limbs of the Kambalda Dome. The deposits are ribbon-like bodies of massive, matrix and disseminated sulphides that occur at the base of the silver Lake Member on the contact with the Lunnon Basalt. The massive and disseminated lodes tend to be higher tenor than the contact material.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lowe limits of the Mineral Resource.	• Unlike other nickel deposits on the Kambalda Dome, the Beta Hunt system displays complex contact morphologies, which leads to irregular lode positions. The overall plunge of the deposits is shallow in a southeast direction, with an overall plunge length in excess of 1km. The individual lode positions have a strike length averaging 40m and a dip extent averaging 10m. The geometry of these lode positions varies in dip from 10° to the west to 80° to the east. The mineralisation within these lode positions is highly variable ranging from a completely barren contact to zones where the mineralisation is in excess of 10m in true thickness. The Ni deposits predominantly vary from 0.5m to 4m true thickness but average between 1m and 2m. Down dip widths range from 40m to 100m. The depth at which the Ni mineralisation occurs along the UM/Basalt contact varies from approximately 650m to 820m in depth from surface.

Criteria JORC Code Explanation Commentary Estimation and The nature and appropriateness of the estimation technique(s) applied and key The Ni sulphides display lenticular geometries and are concentrated along linear modelling techniques. assumptions, including treatment of extreme grade values, domaining, channels that overlie gold-bearing shears in the Lunnon Basalt. The process of interpolation parameters, maximum distance of extrapolation from data points. modelling the mineralised lenses involved a review of the ultramafic contact while stepping through the drill data and digitising polygons to suit the geometry of the The availability of check estimates, previous estimates and/or mine production nickel sulphides on each section. Sections were orientated perpendicular to the records and whether the Mineral Resource estimate takes appropriate account of strike of the mineralisation and separated by distances to suit the spacing of fans of such data. drill holes and locations of structurally related disruptions in the continuity of the The assumptions made regarding recovery of by-products. geology. Numerous porphyry dykes of varying composition from granite through to Estimation of deleterious elements or other non-grade variables of economic digrite and granodigrite break up the nickel mineralisation and effectively stope out significance (e.g. sulphur for acid mine drainage characterisation). the nickel-bearing sulphides. The interpreted lenses are modelled to account for the In the case of block model interpolation, the block size in relation to the average porphyry intrusions so that mineralisation does not extend into areas of waste. sample spacing and the search employed. Mineralisation domains were identified using geological characteristics (logged Any assumptions behind modelling of selective mining units. nickel sulphides ranging from massive to matrix and blebby), and intervals within interpreted domains captured the full sequence of economic nickel sulphide profile Any assumptions about correlation between variables. (from the massive sulphide through matrix and included blebby sulphides). The process of validation, the checking process used, the comparison of model While each of the nickel sulphide deposits and each mineralised body was estimated data to drillhole data, and use of reconciliation data if available. individually, the deposits were subdivided into domains for geostatistical purposes. The domains were defined visually such that logically grouped lenses tend to have common stratigraphic positions and mineralisation characteristics and do not overlap in space. Drillhole samples were flagged with the mineralisation wireframes. Top-cuts were applied to high grade outliers for Au, As, and Cu within each grouped domain by analysing log probability plots, histograms, and mean/variance plots. Estimations was completed for Ni, Au, As, Co, Cu, Fe, MgO, S, and density. Variograms were modelled on the accumulation "metal" variable (vertical thickness multiplied by grades) for all elements, using the intermediate stage 1 m composite data. Micromine software was used for geostatistical analysis. For Kappa and Delta, variograms were modelled using the 0.8m or 0.7m composites for the various elements within each domain, using Supervisor software. Three-dimensional, non-rotated block volume models were created for use in grade estimation and sized to encompass each of the nickel sulphide deposits. No waste background model was created. The models assume underground mining by very selective methods, using airleg miners where required. As the lodes are very narrow, usually averaging less than 2m horizontal width, it would be unlikely that selective mining would occur across their width. Therefore, a seam model was chosen to represent their volume. For the relatively flat-lying deposits, a single block spans the vertical (Z) width of the zones. The selection of appropriate block sizes took into consideration the geometry of the domains to be modelled, the local drillhole spacing and the strike and dip of the domains. The narrow lode domains had parent cell dimensions set to 10m x 10m in the northing and easting directions for all modelled lenses. The dimensions across the width of the lenses are infinitely variable in vertical direction to allow for accurate definition of the variable width in each lens using a single cell. For the Kappa and Delta lenses, a parent block size was set to 2m (X) by 5m (Y) by 5m (Z) with sub-celling to 0.5m (X) by 1.25 (Y) by 1.25m (Z). Lode geometries are generally very narrow. For this reason, an estimation methodology using two-dimensional linear accumulation was selected for estimation of each mineralised lode. The zone samples were composited to single, full zone width intercepts having variable lengths according to the width of the mineralisation and angle of intersection. Composited full zone intercept widths do

Criteria	JORC Code Explanation Commentary		
		not necessarily represent the true widths of the mineralised zones. To calculate true and vertical widths, local orientations (dip and dip direction) of the mineralisation were assigned to the composite intervals based on the mineralisation wireframes. Dip and dip direction values were calculated for each triangle in the wireframe models, and then interpolated into the sample points using the nearest neighbour ("NN") method. From this, the composite interval's true thickness, vertical thickness and horizontal thickness were calculated and visually checked. Accumulation variables were calculated for each modelled element. Two lenses at the East Alpha deposit were modelled using 3D wireframes and ordinary kriging interpolation using 0.8m composites (Kappa) and 0.7m (Delta).	
		• For all Ni deposits, except the Kappa and Delta lenses, a base search ellipse equal to the long ranges for each deposit was used. The first search ellipse employed two-thirds of the base search parameters. The second and all the subsequent interpolation runs used a search ellipse multiplier to the search axes, which was started from 1 and incremented by 1 until all cells were informed with all estimated grades. All accumulations and vertical thicknesses were initially estimated in all subcells, and then volume weighted average values were calculated within the 10m x 10m parent cells. When model cells were estimated using search radii that were not greater than twice the long ranges along the horizontal axes, the minimum and maximum composite search parameters for block estimates used a minimum of four and a maximum of six samples. No restrictions were applied for drillhole numbers used in the estimate as all samples were composited to the entire mineralised intersections. No sectors were employed. The degree of discretization was 5 x 5 x 5 points. The grade estimation in the centre of the block consisted of the simple average value of the estimated points throughout the block volume.	
		For the Kappa and Delta lenses, a single estimation pass was used with a search distance set to 50m and the search ellipse orientated along the geometry of the lode. Discretisation was set to 4 x 5 x 5 (XYZ). A minimum of 5 samples and maximum of 15 was applied.	
		A correlation exists between Ni and density, and this was used to calculate regression formulae for estimation which were then applied to all composited intervals. The resultant estimated density values were interpolated into the block model using ordinary kriging algorithm and semi variogram models generated for nickel grades. No bulk density data was available for Beta Central. A regression formula was generated for combined composites at B30, B40, and Gamma, and a formula derived for the Beta West and East Alpha composites.	
		The Mineral Resource is depleted for mining voids and subsequently classified in line with JORC guidelines utilising a combination of various estimation derived parameters and geological / mining knowledge.	
		Model validation of grade estimates was completed by visual checks on screen in cross-section and plan view to ensure that block model grades honoured the grade of the composites. A statistical comparison of sample vs block grades was tabulated and swath plots generated in various directions. Model performance is measured against end of month reconciliations.	
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	Tonnage estimates are dry tonnes.	
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	The Ni Mineral Resource is reported within proximity to underground development and nominal 1% Ni lower cut-off grade for the nickel sulphide mineralisation.	

Criteria	JORC Code Explanation	Commentary
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum minin dimensions and internal (or, if applicable, external) mining dilution. It is alway necessary as part of the process of determining reasonable prospects for eventure economic extraction to consider potential mining methods, but the assumption made regarding mining methods and parameters when estimating Minera Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made. 	The mine commenced operation in 1974, mining both nickel and gold over extended periods. Mining is via flat back or air leg utilising single boom jumbo and air leg miner. Flat back mining operates on top of waste fill placed on the previous level. Approximately 0.5m of waste in the floor is removed on completion of mining to
Metallurgical factors or assumptions	 The basis for assumptions or predictions regarding metallurgical amenability. It always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but th assumptions regarding metallurgical treatment processes and parameters mad when reporting Mineral Resources may not always be rigorous. Where this is th case, this should be reported with an explanation of the basis of the metallurgical assumptions made. 	Purchase Agreement (OTCPA) with BHP. Material is blended with nickel ores from other mines, and the metallurgical recovery credited to Beta Hunt is based on the mineralisation grade. The Kambalda Nickel Concentrator (KNC) is the delivery point for Beta Hunt ore under the OTCPA.
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue dispose options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for greenfields project, may not always be well advanced, the status of ear consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with a explanation of the environmental assumptions made. 	conditions for grant of the respective leases. Beta Hunt is an operating underground mine that is in possession of all required permits. Westgold owns and operates Beta Hunt through a sub-lease agreement with SIGMC. The environmental permitting and compliance requirements for mining operations on the sub-lease tenements are the responsibility of Westgold under the sub-lease arrangement.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods the adequately account for void spaces (vugs, porosity, etc.), moisture and difference between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	areas. All raw sample intervals within the mineralised zones that had both Ni grades and density measurements were used to calculate regression formulae which were then applied to all composited intervals. The resultant estimated density values were interpolated into the block model using ordinary kriging algorithm and semi variogram models generated for nickel grades.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	of various estimation derived parameters, input data and geological / mining knowledge. This approach considers all relevant factors and reflects the Competent Person's view of the deposit.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	Resource estimates are peer reviewed by the Corporate technical team.

Criteria	JOR	C Code Explanation	Com	nmentary
Discussion of relative accuracy/ confidence	•	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be	•	The high quality of input data, and robust knowledge of the structural emplacement of Ni at Beta Hunt provides confidence in the Mineral Resource estimate. Ni lenses are mined via air leg which provides flexibility for mining diverse geometries which are highly visible. All currently reported resources estimates are representative on both a global and local scale. A continuing history of mining with good reconciliation of mine claimed to mill recovered provides confidence in the accuracy of the estimates.
		compared with production data, where available.		

SECTION 4: ESTIMATION AND REPORTING OF ORE RESERVES

(Criteria listed in section 1, and where relevant in sections 2 and 3, also apply to this section)

Criteria	IOD	C Code Evalenation	Com	, amontory
		C Code Explanation		Imentary No pickel Ore Recents is stated in this release
Mineral Resource	•	Description of the Mineral Resource estimate used as a basis for the conversion to	•	No nickel Ore Reserve is stated in this release.
estimate for		an Ore Reserve.		
conversion to Ore	•	Clear statement as to whether the Mineral Resources are reported additional to,		
Reserves		or inclusive of, the Ore Reserves.	_	N. I. I.O. B I II I
Site visits	•	Comment on any site visits undertaken by the Competent Person and the outcome	•	No nickel Ore Reserve is stated in this release.
		of those visits.		
_	•	If no site visits have been undertaken indicate why this is the case.		
Study status	•	The type and level of study undertaken to enable Mineral Resources to be	•	No nickel Ore Reserve is stated in this release.
		converted to Ore Reserves.		
	•	The Code requires that a study to at least Pre-Feasibility Study level has been		
		undertaken to convert Mineral Resources to Ore Reserves. Such studies will have		
		been carried out and will have determined a mine plan that is technically		
		achievable and economically viable, and that material Modifying Factors have		
	-	been considered		
Cut-off parameters	•	The basis of the cut-off grade(s) or quality parameters applied.	•	No nickel Ore Reserve is stated in this release.
Mining factors or	•	The method and assumptions used as reported in the Pre-Feasibility or Feasibility		
assumptions		Study to convert the Mineral Resource to an Ore Reserve (i.e. either by application		
		of appropriate factors by optimisation or by preliminary or detailed design).		
	•	The choice, nature and appropriateness of the selected mining method(s) and		
		other mining parameters including associated design issues such as pre-strip,		
		access, etc.		
	•	The assumptions made regarding geotechnical parameters (e.g. pit slopes, stope		
		sizes, etc.), grade control and pre-production drilling.		
	•	The major assumptions made and Mineral Resource model used for pit and stope		
		optimisation (if appropriate).		
	•	The mining dilution factors used.		
	•	The mining recovery factors used.		
	•	Any minimum mining widths used.		
	•	The manner in which Inferred Mineral Resources are utilised in mining studies and		
		the sensitivity of the outcome to their inclusion.		
	•	The infrastructure requirements of the selected mining methods.		
Metallurgical factors or	•	The metallurgical process proposed and the appropriateness of that process to	•	No nickel Ore Reserve is stated in this release.
assumptions		the style of mineralisation.		
	•	Whether the metallurgical process is well-tested technology or novel in nature.		
	•	The nature, amount and representativeness of metallurgical test work		
		undertaken, the nature of the metallurgical domaining applied and the		
		corresponding metallurgical recovery factors applied.		
	•	Any assumptions or allowances made for deleterious elements.		
	•	The existence of any bulk sample or pilot scale test work and the degree to which		
		such samples are considered representative of the orebody as a whole.		
	•	For minerals that are defined by a specification, has the ore reserve estimation		
		been based on the appropriate mineralogy to meet the specifications?		

Criteria	JORC Code Explanation	Commentary
Environmental	The status of studies of potential environmental impacts of the mining and processing operation. Details of waste rock characterisation and the consideration of potential sites, status of design options considered and, where applicable, the status of approvals for process residue storage and waste dumps should be reported.	No nickel Ore Reserve is stated in this release.
Infrastructure	The existence of appropriate infrastructure: availability of land for plant development, power, water, transportation (particularly for bulk commodities), labour, accommodation; or the ease with which the infrastructure can be provided or accessed.	No nickel Ore Reserve is stated in this release.
Costs	 The derivation of, or assumptions made, regarding projected capital costs in the study. The methodology used to estimate operating costs. Allowances made for the content of deleterious elements. The source of exchange rates used in the study. Derivation of transportation charges. The basis for forecasting or source of treatment and refining charges, penalties for failure to meet specification, etc. The allowances made for royalties payable, both Government and private. 	No nickel Ore Reserve is stated in this release.
Revenue factors	 The derivation of, or assumptions made regarding revenue factors including head grade, metal or commodity price(s) exchange rates, transportation and treatment charges, penalties, net smelter returns, etc. The derivation of assumptions made of metal or commodity price(s), for the principal metals, minerals and co-products. 	No nickel Ore Reserve is stated in this release.
Market assessment	 The demand, supply and stock situation for the particular commodity, consumption trends and factors likely to affect supply and demand into the future. A customer and competitor analysis along with the identification of likely market windows for the product. Price and volume forecasts and the basis for these forecasts. For industrial minerals the customer specification, testing and acceptance requirements prior to a supply contract. 	No nickel Ore Reserve is stated in this release.
Economic	The inputs to the economic analysis to produce the net present value (NPV) in the study, the source and confidence of these economic inputs including estimated inflation, discount rate, etc. NPV ranges and sensitivity to variations in the significant assumptions and inputs.	No nickel Ore Reserve is stated in this release.
Social	The status of agreements with key stakeholders and matters leading to social licence to operate.	No nickel Ore Reserve is stated in this release
Other	 To the extent relevant, the impact of the following on the project and/or on the estimation and classification of the Ore Reserves: Any identified material naturally occurring risks. The status of material legal agreements and marketing arrangements. The status of governmental agreements and approvals critical to the viability of the project, such as mineral tenement status, and government and statutory approvals. There must be reasonable grounds to expect that all necessary Government approvals will be received within the timeframes anticipated in the Pre-Feasibility or Feasibility study. Highlight and discuss the materiality of any unresolved matter that is dependent on a third party on which extraction of the reserve is contingent. 	No nickel Ore Reserve is stated in this release.

Criteria	JORC Code Explanation	Commentary
Classification	 The basis for the classification of the Ore Reserves into varying confid categories. Whether the result appropriately reflects the Competent Person's view of deposit. The proportion of Probable Ore Reserves that have been derived from Meas Mineral Resources (if any). 	the state of the s
Audits or reviews	The results of any audits or reviews of Ore Reserve estimates.	No nickel Ore Reserve is stated in this release.
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level. Ore Reserve estimate using an approach or procedure deemed appropriate be Competent Person. For example, the application of statistical or geostatic procedures to quantify the relative accuracy of the reserve within seconfidence limits, or, if such an approach is not deemed appropriate, a qualified discussion of the factors which could affect the relative accuracy and confidence the estimate. The statement should specify whether it relates to global or local estimates, if local, state the relevant tonnages, which should be relevant to technicate economic evaluation. Documentation should include assumptions made an procedures used. Accuracy and confidence discussions should extend to specific discussions any applied Modifying Factors that may have a material impact on Ore Reviability, or for which there are remaining areas of uncertainty at the current stage. It is recognised that this may not be possible or appropriate in all circumstates These statements of relative accuracy and confidence of the estimate should compared with production data, where available. 	y the tical ated ative ence and, and d the as of erve tudy acces.