

Cobre Limited A.C.N. 626 241 067 (ASX: CBE) Level 10, Kyle House, 27 Macquarie Place SYDNEY NSW 2000 Tel: + 61 407 123 143 <u>www.cobre.com.au</u>

17 July 2025

ASX Limited - Company Announcements Platform

COMMENCEMENT OF ENVIRONMENTAL PERMITTING, MINERAL RESOURCE MODELLING AND LATEST ASSAY RESULTS

NGAMI COPPER PROJECT, BOTSWANA

Cobre Limited (ASX: **CBE**, **Cobre** or **Company**) is pleased to announce the appointment of Botswanabased Loci Environmental (**Loci**) to undertake an Environmental Impact Assessment (**EIA**) for its wholly-owned Ngami Copper Project (**NCP**) in the Kalahari Copper Belt (**KCB**). Loci have more than 20 years of experience in the industry and have completed EIAs for several recent mining development projects in country. The study will include further detailed hydrogeological input and modelling which will be undertaken by WSP in Australia. The study is estimated to take approximately 9 months to complete and, following approval by the Department of Environmental Protection (**DEP**), will cover the permitting requirements for commissioning of an In-Situ Copper Recovery (**ISCR**) pilot operation. Following the successful completion of a pilot study, the EIA will be upgraded for permitting for a fullscale ISCR production at NCP.

Final assay results have been received from the infill drilling programme on the Comet Target at NCP with results further substantiating the zone of thicker chalcocite-dominant, copper-silver mineralisation reported in the *ASX announcement of 27 May 2025*. Highlights include:

- NCP65: 16.7m @ 0.44% Cu & 10 g/t Ag from 360.52m to 377.22m downhole; and
- NCP66: 18.5m @ 0.52% & 15 g/t Ag from 295.98 to 314.49m downhole.

WSP is currently modelling the drill results with a maiden Mineral Resource Estimate (**MRE**) expected by August 2025.

Commenting on the resource drilling, Adam Wooldridge, Cobre's Chief Executive Officer, said:

"We look forward to completing the EIA and MRE, both major milestones in our journey to development at NCP. The recent assay results continue to demonstrate the grade continuity at the Comet Target exceeding previous estimates and with notably higher grade than comparable ISCR projects."

A ten-hole Diamond Drilling (**DD**) infill programme totalling 3,420m, over the Comet Target, was recently completed with the objective of bringing approximately 2.5km of strike of the 4km-long target into a resource category following the completion of an MRE, which will be based on a total of 32 DD holes. Four acid ICP-AES assay results have been received from ALS laboratories in Johannesburg for all of the DD holes. This report highlights assay results from the last two outstanding DD holes with earlier results reported in the ASX announcement of 23 April 2025 and the ASX announcement of 27 May 2025.

A locality map illustrating the project and area of interest for the current announcement is provided in *Figures 1 and 2*. Plan, long-section and oblique sections of the drill results are provided in *Figure 3*. *Table 1* provides a summary of infill drill positions, depth, azimuth and dip. *Table 2* provides a summary of intersections from the completed infill drill programme. A summary of the key tasks and timelines for the EIA is provided in *Figure 4*.

HoleID	Easting	Northing	RL	EOH	Dip	Azimuth	Assays Completed
NCP57	599077	7685009	1101	303	60	155	Yes
NCP58	599320	7685093	1101	219	60	155	Yes
NCP59	599454	7685235	1100	509	60	155	Yes
NCP60	598193	7684565	1102	312	60	155	Yes
NCP61	598367	7684597	1101	174	60	155	Yes
NCP62	598423	7684721	1102	451	60	155	Yes
NCP63	599609	7685245	1099	294	60	155	Yes
NCP64	599683	7685354	1096	447	60	155	Yes
NCP65	599992	7685485	1097	390	60	155	Yes
NCP66	600183	7685564	1098	324	60	155	Yes

Table 1. Drill hole details for the current infill drilling. Coordinates are quoted in UTM34S, WGS84

 datum.

Table 2. Drill hole assay results for the completed infill drilling. Results for the current announcementare highlighted.

HoleID	From	То	Result	Assays Completed
NCP57	277.9	287.2	9.3m @ 0.69% Cu & 17 g/t Ag	Yes
NCP58	206.2	209.78	3.6m @ 0.58% Cu & 13 g/t Ag	Yes
NCP59	480.16	488.63	8.5m @ 0.45% Cu & 12 g/t Ag	Yes
NCP60	283.56	298.73	15.2m @ 0.60% Cu & 13 g/t Ag	Yes
NCP61	147.19	156.27	9.1m @ 0.36% Cu & 9 g/t Ag	Yes
NCP62	430.31	439.17	8.9m @ 0.35% Cu & 9 g/t Ag	Yes
NCP63	264.85	283.58	18.7m @ 0.53% Cu & 11 g/t Ag	Yes
NCP64	419.06	435.39	16.3m @ 0.52% & 14 g/t Ag	Yes
NCP65	360.52	377.22	16.7m @ 0.44% Cu & 10 g/t Ag	Yes
NCP66	295.98	314.49	18.5m @ 0.52% & 15 g/t Ag	Yes

Figure 1. Locality map illustrating the position of Cobre's projects in the KCB.

Figure 2. Plan view illustrating the focus area (A-A') for infill drilling at the Comet Target. The focus area covers approximately 2.5km of the 4km-long Comet Target strike extent. Copper-silver Intersections from the current announcement annotated.

Figure 3. Long-section (top), plan (bottom left) and oblique section (bottom right) illustrating results from the infill drill programme. Intersections are scaled by copper grade. Intersections related to the current announcement are highlighted.

Figure 4. Key tasks and estimated timeline for the EIA approval.

•Waste management plan report •ESIA Reporting including impact assessment, mitigation and

• Development of Environmental and

Social Management Plan

monitoring

Geology and Mineralisation

Mineralisation at NCP is sedimentary-hosted, structurally controlled, copper-silver associated with the redox contact between oxidised Ngwako Pan Formation red beds and overlying reduced marine sedimentary rocks of the D'Kar Formation on the limbs of anticlinal structures. Drilling has focussed on the southern anticlinal structure which extends for over 40km across the NCP with evidence for anomalous Cu-Ag mineralisation on both northern and southern limbs.

Drilling results to date have returned consistent, wide intersections of anomalous to moderate -grade Cu-Ag values over extensive strike lengths with smaller structurally controlled higher-grade zones. This style of mineralisation is dominated by fine-grained chalcocite which occurs along cleavage planes (S_1) and in fractures rather than the vein hosted bornite with chalcopyrite more typical of the KCB style. Importantly, the chalcocite mineralisation is amenable to acid leaching, occurs below the water table and is associated with well-developed fracture zones bounded by more competent hanging and footwall units satisfying key considerations for ISCR.

Target Model

The NCP area is located near the northern margin of the KCB and includes significant strike of subcropping Ngwako Pan / D'Kar Formation contact on which the majority of the known deposits in the KCB occur.

Cobre is aiming to prove up a similar ISCR process to Taseko Mines Ltd's (TSX:TKO, NYSE:TGB) Florence Copper Deposit (320Mt @ 0.36% Cu) and Copper Fox' Van Dyke Deposit¹ (265.6Mt @ 0.29% Cu) in Arizona which both share a similar scale to NCP².

REFERENCES

For further information and references please see ASX Announcements:

30 August 2023 – NCP EXPLORATION TARGET ESTIMATE HIGHLIGHTS SIGNIFICANT SCALE

5 December 2022 - HIGH-GRADE COPPER DISCOVERY AT COMET TARGET

21 November 2024 - COMMENCEMENT OF TARGET AND RESOURCE DRILLING

23 April 2025 - RESOURCE DRILLING COMPLETED AT COMET

27 May 2025 -COMET DRILLING DELINEATES BROAD ZONE OF CU-AG MINERALISATION

¹ Home | Copper Fox Metals Inc.

² Florence Copper | Taseko Mines Limited

This ASX release was authorised on behalf of the Cobre Board by: Adam Wooldridge, Chief Executive Officer.

For more information about this announcement, please contact: Adam Wooldridge Chief Executive Officer wooldridge@cobre.com.au

COMPETENT PERSONS STATEMENT

The information in this announcement that relates to exploration results is based on information compiled by Mr David Catterall, a Competent Person and a member of a Recognised Professional Organisations (ROPO). David Catterall has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertakento qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC 2012). David is the principal geologist at Tulia Blueclay Limited and a consultant to Kalahari Metals Limited. David Catterall is a member of the South African Council for Natural Scientific Professions, a recognised professional organisation.

David Catterall consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	 The information in this release relates to the technical details from the Company's exploration and drilling program at the Ngami Copper Project (NCP) located within the Ngamiland District on the Kalahari Copper Belt, Republic of Botswana. Representative diamond half core samples are taken from zones of interest. Samples were taken consistently from the same side of the core cutting line. Core cutting line is positioned to result in two splits as mirror images with regards to the mineralisation, and to preserve the orientation line.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used	 Diamond core sample representativity was ensured by bisecting structures of interest, and by the sample preparation technique in the laboratory. The diamond drill core samples were selected based on geological logging and pXRF results, with the ideal sampling interval being 1m, whilst ensuring that sample interval does not cross any logged significant feature of interest. Individual core samples were crushed entirely to 90%
		 less than 2mm, riffle split off 1kg, pulverise split to better than 85% passing 75 microns (ALS PREP-31D). Sample representivity and calibration for ICP AES analysis is ensured by the insertion of suitable QAQC samples.
	Aspects of the determination of mineralisation that are Material to the Public Report.	 Samples are digested using 4-acid near total digest and analysed for 34 elements by ICP-AES (ALS ME- ICP61, and ME-ICP61a). Over range for Cu and Ag are digested and analysed with the same method but higher detection limits (ALS

COBRE 💢

	In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	 <i>ME-OG62</i>). <i>pXRF</i> measurements are carried out with appropriate blanks and reference material analysed routinely to verify instrument accuracy and repeatability.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	• COBRE's Diamond drilling is being conducted with Tricone (Kalahari Sands), followed by PQ/HQ/NQ core sizes (standard tube) with HQ and NQ core oriented using AXIS Champ ORI tool.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	• Core recovery is measured and recorded for all drilling. Once bedrock has been intersected, sample recovery has been very good >98%.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	 pXRF samples are taken along the orientation line at consistent measured points to avoid sample biases. Samples were taken consistently from the same side of the core cutting line to avoid bias. Geologists frequently check the core cutting procedures to ensure the core cutter splits the core correctly in half. Core samples are selected within logged geological,
		 structural, mineralisation and alteration constraints. Samples are collected from distinct geological domains with sufficient width to avoid overbias.

	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	•	Sample recovery was generally very good and as such it is not expected that any such bias exists.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	•	COBRE Diamond drill core is logged by a team of qualified geologists using predefined lithological, mineralogical, physical characteristic (colour, weathering etc) and logging codes. The geologists on site followed industry best practice and standard operating procedure for Diamond core drilling processes. Diamond drill core was marked up on site and logged back at camp where it is securely stored. Data is recorded digitally using Ocris geological logging software. The QAQC compilation data for all logging results are stored and backed up on the cloud.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	•	All logging used standard published logging charts and classification for grain size, abundance, colour and lithologies to maintain a qualitative and semi- quantitative standard based on visual estimation. Magnetic susceptibility readings are also taken every meter and/or half meter using a ZH Instruments SM- 20/SM-30 reader.
	The total length and percentage of the relevant intersections logged.	•	100% of all recovered intervals are geologically logged.
Sub- sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	•	Selected intervals are currently being cut (in half) with a commercial core cutter, using a 2mm thick blade, for one half to be sampled for analysis while the other half is kept for reference. For selected samples core is quartered and both quarters being sampled as an original and field replicate sample.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry	•	N/A

For all sample types, the nature, quality and appropriateness of the sample preparation techniques	 further sieved to -90μm by the laboratory. Field sample preparation is suitable for the core samples. The laboratory sample preparation technique (ALS PREP-31D) is considered appropriate and suitable for the core samples and expected grades. Metallurgical intermittent bottle roll test work was carried out on a relatively fine reserve sample crush with ongoing insitu copper recovery vessel testing which is deemed to be more representative of the insitu environment. COBRE's standard field QAQC procedures for core drilling and soil samples include the field insertion of blanks, selection of standards, field duplicates (quarter core), and selection of requested laboratory pulp and coarse crush duplicates. These are being inserted at a rate of 2.5-5% each to ensure an appropriate rate of QAQC. Metallurgical samples were composited, homogenised and split into test charges. Sampling is deemed appropriate for the type of survey and equipment used. The duplicate sample data (field duplicate and lab duplicates) indicates that the results are representative of mineralisation across the target. Initial metallurgical results quoted have been carried out on a fine crush sample. Future studies will utilise a coarser crush or fractured core. pXRF measurements undertaken on NCP55 and NCP56 are deemed appropriate for a first pass estimate of copper abundance and thickness. No grade-thickness results are provided or implied given the uncertainties in the analysis. Assay results will be provided when these have been received from the laboratory. COBRE's core samples are being sent for 4-acid digest 		
Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	drilling and soil samples include the field inserti blanks, selection of standards, field duplicates (qu core), and selection of requested laboratory pul coarse crush duplicates. These are being inserted rate of 2.5- 5% each to ensure an appropriate re QAQC. Metallurgical samples were composited, homoge	ion of uarter Ip and d at a ate of	
Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.	Sampling is deemed appropriate for the type of s and equipment used. The duplicate sample data (field duplicate an duplicates) indicates that the results are represent and repeatable. Metallurgical samples were taken from several si both anticline limbs deemed to be representati	d lab tative tes on	
Whether sample sizes are appropriate to the grain size of the material being sampled.	out on a fine crush sample. Future studies will ut		
The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	are deemed appropriate for a first pass estimates copper abundance and thickness. No grade-thick results are provided or implied given the uncertan in the analysis. Assay results will be provided these have been received from the laboratory. COBRE's core samples are being sent for 4-acid	ite of kness inties when digest	
	quality and appropriateness of the sample preparation techniques•Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.•Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.•Whether sample sizes are appropriate to the grain size of the material being sampled.•The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is•	quality and appropriateness of the sample preparation techniquesfurther sieved to -90µm by the laboratory.Field sample preparation techniquesField sample preparation is suitable for the samples.The laboratory sample preparation technique PREP-31D) is considered appropriate and suitable the core samples and expected grades.Metallurgical intermittent bottle roll test work carried out on a relatively fine reserve sample with ongoing insitu copper recovery vessel t which is deemed to be more representative of t situ environment.Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.COBRE's standard field QAQC procedures for drilling and soil samples include the field inserti blanks, selection of standards, field duplicates field adopted for all sub-sampling stages to maximise representivity of samples.Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for faled duplicate/second-holf sampling.Sampling is deemed appropriate for the type of s and equipment used.Metallurgical samples were taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for gampling.Metallurgical sample were taken from several si both anticine limbs deemed to be representati mineralisation across the target.Whether sample sizes are appropriate to the grain size of the material being sampled.Initial metallurgical results quoted have been c out on a fine crush sample. Future studies will ut coarser crush or fractured core.The nature, quality and appropriateness of the assaying and laboratory procedures used cons	

	Africa.
	• The analytical techniques (ALS ME-ICP61 and ME- OG62) are considered appropriate for assaying.
	• Intermittent Bottle Roll Leach test work has been carried out on 6m composite samples from both high- and low- grade intersections in different portions of the Comet Target. Results provide an indication of the copper leach performance.
	• Comprehensive head assay was carried out on metallurgical samples to determine Cu speciation (acid soluble Cu, cyanide soluble Cu, residual Cu).
For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	 COBRE use ZH Instruments SM20 and SM30 magnetic susceptibility meters for measuring magnetic susceptibilities and readings are randomly repeated to ensure reproducibility and consistency of the data. A Niton FXL950 pXRF instrument is used with reading times on Soil Mode of 120seconds in total. For the pXRF analyses, well established in-house SOPs were strictly followed and data subject to QAQC before acceptance into the database. A test study of 5 times repeat analyses on selected soil samples is conducted to establish the reliability and repeatability of the pXRF at low Cu-Pb-Zn values. For the pXRF Results, no user factor was applied, and as per SOP the units calibrated daily with their respective calibration disks.
	 All QAQC samples were reviewed for consistency and accuracy. Results were deemed repeatable and representative:

	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	 Appropriate certified reference material was inserted on a ratio of 1:20 samples. Laboratory coarse crush and pulp duplicate samples were alternately requested for every 20 samples. Blanks were inserted on a ratio of 1:20. ALS Laboratories insert their own standards, duplicates and blanks and follow their own SOP for quality control. Both internal and laboratory QAQC samples are reviewed for consistency. The inserted CRM's have highlighted acceptable laboratory accuracy and precision for Cu. The inserted CRM (OREAS96), highlighted acceptable accuracy and precision for results above 10ppm Ag. There is a rather poor precision for Ag at concentration levels of less than 10x the analytical method's detection limit (e.g. < 10ppm Ag. The coarse Blank and lab internal pulp Blank results suggest a low risk of contamination during the sample preparation and analytical stages respectively. The duplicate sample data indicates that the results are representative and repeatable for Cu and Ag. External laboratory checks were carried out by Scientific Services Laboratories showing an excellent correlation and a high degree of repeatability of the results. The laboratory comparative sample data indicates that the analytical results from ALS Laboratories for Cu and Ag are representative and repeatable
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	• All drill core intersections were verified by peer review.
	The use of twinned holes.	• No twinned holes have been drilled to date.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	 All data is electronically stored with peer review of data processing and modelling. Data entry procedures standardized in SOP, data checking and verification routine. Data storage on partitioned drives and backed up on

		server and on the cloud.
	Discuss any adjustment to assay data.	• No adjustments were made to assay data.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	 COBRE's Drill collar coordinates are captured using Catalyst differential GPS with 1cm accuracy During earlier drill programmes, drill holes were initially surveyed using handheld GPS and then re- surveyed with differential DGPS at regular intervals to ensure sub-meter accuracy. Downhole surveys of drill holes is being undertaken using an AXIS ChampMag tool or AXIS gyro.
	Specification of the grid system used.	• The grid system used is WGS84 UTM Zone 34S. All reported coordinates are referenced to this grid.
	Quality and adequacy of topographic control.	• Topographic control is based on satellite survey data collected at 30m resolution. Quality is considered acceptable.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	 Data spacing and distribution of all survey types is deemed appropriate for the type of survey and equipment used. Drill hole spacing is broad varying between 125 m to greater than 1 600 m, as might be expected for this stage of exploration.
	Whether sample compositing has been applied.	• N/A

Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	• Drill spacing is currently broad and hole orientation is aimed at intersecting the bedding of the host stratigraphy as perpendicular as practically possible (e.g. within the constraint of the cover thickness). This is considered appropriate for the geological setting and for the known mineralisation styles in the Copperbelt.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 Existence, and orientation, of preferentially mineralised structures is not yet fully understood but current available data indicates mineralisation occurs within steep, sub-vertical structures, sub-parallel to foliation. No significant sampling bias is therefore expected.
Sample security	The measures taken to ensure sample security.	 Sample bags are logged, tagged, double bagged and sealed in plastic bags, stored at the field office. Diamond core is stored in a secure facility at the field office and then moved to a secure warehouse. Sample security includes a chain-of-custody procedure that consists of filling out sample submittal forms that are sent to the laboratory with sample shipments to make certain that all samples are received by the laboratory. Prepared samples were transported to the analytical laboratory in sealed gravel bags that are accompanied by appropriate paperwork, including the original sample preparation request numbers and chain-of-custody forms
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 COBRE's drill hole sampling procedure is done according to industry best practice. Hydrogeological results are reviewed by WSP Australia Metallurgical test work was conducted by and reviewed by Independent Metallurgical Operations Pty Ltd. Geological modelling was carried out and reviewed by Caracle Creek International Consulting. Gap Analysis undertaken by Mets Review of exploration target modelling and ISCR processing was undertaken by ERM

JORC Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	 Cobre Ltd holds 100% of Kalahari Metals Ltd. Kalahari Metals in turn owns 100% of Triprop Holdings Ltd and Kitlanya (Pty) Ltd both of which are locally registered companies. Triprop Holdings holds the NCP licenses PL035/2017 (306.76km²) and PL036/2017 (49.8km²), which, following a recent renewal are due their next extension on 30/09/2026
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Previous exploration on portions of the NCP was conducted by BHP. BHP collected approximately 113 soil samples over the NCP project in 1998. BHP collected Geotem airborne electromagnetic data over a small portion of PL036/2012.
Geology	Deposit type, geological setting and style of mineralisation.	 The regional geological setting underlying all the Licences is interpreted as Neoproterozoic meta sediments, deformed during the Pan African Damara Orogen into a series of ENE trending structural domes cu by local structures. The style of mineralisation expected comprises strata-bound and structurally controlled disseminated and vein hosted Cu/Ag mineralisation.

Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.			•	 Summary table of all completed core drill holes on the NCP licenses is presented below. All coordinates are presented in UTM Zone 34S, WGS84 datum. All the holes have been re-surveyed with differentially corrected GPS. Drill holes designated TRDH are original holes drilled by Triprop in 2014, MW are monitoring wells and PW injection/pumping wells. Summary results of intersections are provided using a cut-off of 0.2% Cu to provide a comparable Cu_{eq} m% estimate (Cueq% = Cu% + Ag(g/t)* 0.0087) using metal prices from March 2023. Summary results for of > 1% Cu over 1m are provided in the next table. 			
Hole ID	Easting	Northing	RL	I	ЕОН	Dip	Azimuth	
NCP01	594786.0	7694068.0	105	2.0	76.4	-90.0	0.0	
NCP01A	594786.0	7694070.0	105	2.0	95.5	-90.0	0.0	
NCP02	617226.0	7692104.0	999	9.0	344.7	-90.0	0.0	
NCP03	594746.0	7693874.0	1034	4.0	294.0	-80.0	155.0	
NCP04	590768.0	7691124.0	1054	4.0	107.0	-80.0	155.0	
NCP05	590566.0	7691488.0	105	3.0	177.0	-75.0	155.0	
NCP06	590610.0	7691398.0	105	0.0	283.1	-70.0	155.0	
NCP07	599889.5	7685403.0	1099	9.2	387.3	-55.8	150.8	
NCP08	598985.5	7684909.0	110	1.9	171.3	-61.0	149.8	
NCP09	598092.8	7684452.0	110	2.5	246.3	-60.4	147.9	
NCP10	601620.3	7686327.4	1093	2.4	351.5	-62.4	152.5	
NCP11	598960.0	7684952.0	106	8.0	45.4	-60	150	
NCP11-A	598963.0	7684949.0	108	3.0	81.3	-60	150	
NCP11-B	598958.5	7684956.8	110	1.9	384.4	-62.8	144.6	
NCP12	599431.6	7685158.1	110	0.5	252.3	-58.2	153.0	
NCP13	598533.8	7684688.8	110	2.8	210.2	-57.4	13750.3	
NCP14	600311.2	7685611.5	109	7.5	276.3	-58.7	151.8	
NCP15	601192.3	7686073.9	109	5.5	243.3	-57.9	152.0	
NCP16	602078.3	7686537.5	1093	2.0	225.3	-57.3	149.9	
NCP17	599185.6	7685059.8	110	0.6	261.3	-53.7	150.2	

NCP18	598730.0	7684840.0	1098.0	64.0	-60	150
NCP18A	598727.0	7684848.1	1102.1	317.7	-57.7	159.9
NCP19	599212.0	7685019.7	1100.3	186.3	-59.7	152.0
NCP20	598762.0	7684798.0	1115.0	68.6	-60	150
NCP20A	598758.7	7684796.7	1102.2	227.7	-63.1	150.6
NCP21	589690.1	7679006.7	1120.7	243.4	-58.7	147.3
NCP22	587386.0	7677006.9	1121.2	180.4	-59.4	150.9
NCP23	599161.4	7685097.5	1100.9	458.7	-59.5	152.7
NCP24	605248.0	7688073.3	1085.4	228.3	-57.7	146.0
NCP25	598876.3	7684850.8	1101.4	164.7	-61.0	145.6
NCP26	598643.5	7684747.6	1102.8	233.7	-62.4	147.8
NCP27	605504.4	7683638.7	1087.0	183.5	-62.5	328.2
NCP28	598622.2	7684786.0	1102.7	317.5	-57.9	147.7
NCP29	600752.0	7679852.5	1109.8	252.4	-59.2	328.2
NCP30	598851.9	7684887.0	1101.7	263.7	-57.7	148.9
NCP31	599441.0	7678120.0	1104.0	63.6	-60	325
NCP31A	599443.3	7678119.6	1114.0	378.5	-60.7	326.5
NCP32	610526.0	7686924.7	1066.0	104.7	-60.7	329.1
NCP33	610574.1	7686840.8	1063.7	278.9	-60.6	329.5
NCP34	590272.0	7679998.6	1121.1	450.4	-59.2	152.1
NCP35	610139.8	7686588.1	1059.1	290.6	-58.8	334.5
NCP36	601040.3	7679346.7	1107.4	537.3	-52.6	325.2
NCP37	612295.1	7687854.7	1062.3	227.6	-62.4	341.2
NCP38	612745.8	7688087.8	1062.7	305.6	-61.7	331.0
NCP39	600936.9	7679533.6	1108.4	363.5	-57.2	326.5
NCP40	611020.3	7687066.1	1066.4	320.8	-61.1	330.5
NCP41	592795.4	7681630.5	1108.5	468.5	-61.2	152.0
NCP42	607049.7	7688941.3	1076.2	194.6	-57.6	153.8
NCP43	599097.1	7684968.9	1101.3	197.6	-61.3	150.1
NCP44	586591.5	7676382.2	1123.7	318.5	-57.5	154.6
NCP45	600106.8	7685494.0	1099.4	236.6	-58.2	153.0
NCP46	600529.7	7685715.5	1096.7	202.0	-56.4	151.4
NCP47	595337.9	7670959.5	1133.1	520.0	-56.1	149.4
NCP48	601417.1	7686190.8	1093.7	206.6	-58.7	150.4
NCP49	600005.8	7685434.3	1100.4	116.6	-58.7	149.3
NCP50	599790.2	7685325.2	1097.3	215.6	-59.2	151.6
NCP51	597630.8	7684254.0	1101.2	254.6	-59.9	149.4
NCP52	598764.0	7684788.0	1101.0	146.6	-60.9	148.6
NCP53P	615131	7691128	1036	49	90	0.0
NCP54RC	615133	7691112	1028	116	90	0.0
NCP55	594786.0	7694068.0	1052.0	210.8	-60.0	150
NCP56	610659.0	7690689.0	1064.9	230.8	-60.0	150

NCP57 599077.0 7685093.0 1101.0 303.0 60.0 155.0 NCP58 599320.0 7685093.0 1101.0 219.0 60.0 155.0 NCP60 599454.0 7684585.0 1100.0 509.0 60.0 155.0 NCP61 598433 7684597 1101 174 60 155.0 NCP62 598423 7685245 1099 294 60 155.0 NCP63 599690 7685245 1099 294 60 155.0 NCP64 599683 7685546 1097 393.0 60.0 155.0 NCP64 5996932 76855485 1097 393.0 60.0 155.0 NCP64 600183 7685554 1062.0 71.7 -90.0 0.0 TRDH14-01 61223.6 768780.5 1042.0 33.9 -80.4 0.0 TRDH14-02 609595.7 7686510.3 1061.0 59.7 -89.7 0.0 TRDH14-05<							
NCP59 599454.0 7685235.0 1100.0 509.0 60.0 155.0 NCP60 598193.0 7684565.0 1102.0 312.0 60.0 155.0 NCP61 598433 7684721 1102 451 60 155 NCP63 599609 7685245 1099 294 60 155 NCP64 599683 7685354 1097 390 60 155 NCP66 600183 7685564 1098 324 60 155 NCP66 600183 768585.6 10062.0 71.7 90.0 0.0 TRDH14-02 61223.6 768780.0 1047.0 58.6 -90.0 0.0 TRDH14-02 61233.0 768780.5 1062.4 83.9 -89.4 0.0 TRDH14-02 609703.0 7686485.0 1040.0 149.7 -89.1 0.0 TRDH14-05 609595.7 768651.3 1061.0 59.7 -89.9 0.0 TRDH14-05	NCP57	599077.0	7685009.0	1101.0	303.0	60.0	155.0
NCP60 598193.0 7684565.0 1102.0 312.0 60.0 155.0 NCP61 598367 7684597 1101 174 60 155 NCP62 598423 7684721 1102 451 60 155 NCP63 599609 7685245 1099 294 60 155 NCP64 599693 7685354 1096 447 60 155 NCP65 599992 7685485 1097 390 60 155 NCP66 600183 768785.7 1062.6 71.7 -90.0 0.0 TRDH14-02 612335.7 7687805.6 1062.0 92.8 -89.9 0.0 TRDH14-02 609703.0 7686345.0 1040.0 149.7 -89.9 0.0 TRDH14-04 609703.0 7686416.0 1040.0 149.7 -89.9 0.0 TRDH14-05 609595.7 7686610.3 1061.0 59.7 -89.9 0.0 TRDH14-04	NCP58	599320.0	7685093.0	1101.0	219.0	60.0	155.0
NCP61 598367 7684597 1101 174 60 155 NCP62 598423 7684721 1102 451 60 155 NCP63 599609 7685245 1099 294 60 155 NCP64 599683 7685354 1096 447 60 155 NCP66 600183 7685364 1098 324 60 155 NCP66 600183 7687805.7 1062.6 71.7 -90.0 0.0 TRDH14-02 612335.7 7687805.5 1062.4 83.9 -89.4 0.0 TRDH14-03 612235.7 7687805.5 1062.0 92.8 -89.9 0.0 TRDH14-03 612235.6 768785.6 1062.0 92.8 -89.9 0.0 TRDH14-04 609703.0 7686410.0 1042.0 111.0 -60.0 331.6 TRDH14-05 609595.7 7686510.3 1061.0 95.7 -89.9 0.0 TRDH14-04	NCP59	599454.0	7685235.0	1100.0	509.0	60.0	155.0
NCP62 598423 7684721 1102 451 60 155 NCP63 599609 7685245 1099 294 60 155 NCP64 599683 7685354 1097 390 60 155 NCP65 599992 7685485 1097 390 60 155 NCP66 600183 7685564 1098 324 60 155 NCP66 612339.0 7687802.0 1047.0 58.6 -90.0 0.0 TRDH14-02 612335.7 7687808.5 1062.4 83.9 -89.4 0.0 TRDH14-03 612293.6 768785.6 1062.0 92.8 -89.9 0.0 TRDH14-04 609703.0 7686451.0 1040.0 149.7 -89.1 0.0 TRDH14-05 60955.7 7686510.3 1061.0 59.7 -89.9 0.0 TRDH14-06 609653.0 7684863.0 1055.0 73.0 -89.7 0.0 TRDH14-07	NCP60	598193.0	7684565.0	1102.0	312.0	60.0	155.0
NCP63 599609 7685245 1099 294 60 155 NCP64 599683 7685354 1096 447 60 155 NCP66 600183 7685364 1098 324 60 155 NCP66 600183 7685664 1098 324 60 155 TRDH14-01 612247.8 7687953.7 1062.6 71.7 -90.0 0.0 TRDH14-02 612335.7 7687808.5 1062.4 83.9 -89.4 0.0 TRDH14-03 612293.6 7687885.6 1062.0 92.8 -89.9 0.0 TRDH14-04 609703.0 768643.0 1040.0 149.7 -89.1 0.0 TRDH14-05 609595.7 768643.0 1038.0 55.7 -89.9 0.0 TRDH14-06 609663.0 768483.0 1042.0 111.0 -60.0 331.6 TRDH14-07 609663.0 7684805.0 1055.0 7.3 -89.4 0.0	NCP61	598367	7684597	1101	174	60	155
NCP64 599683 7685354 1096 447 60 155 NCP66 600183 7685584 1097 390 60 155 NCP66 600183 7685584 1098 324 60 155 TRDH14-01 612247.8 7687953.7 1062.6 71.7 -90.0 0.0 TRDH14-02 61233.7 7687805.5 1062.4 83.9 -89.4 0.0 TRDH14-02 61233.7 7687805.5 1062.0 92.8 -89.9 0.0 TRDH14-02 609703.0 7686345.0 1040.0 149.7 -89.1 0.0 TRDH14-05 609595.7 7686510.3 1061.0 59.7 -89.9 0.0 TRDH14-05 60950.0 768643.0 1038.0 59.7 -89.7 0.0 TRDH14-07 609663.0 768643.0 1055.0 73.0 -89.7 0.0 TRDH14-07 600701.0 7684936.0 1055.0 73.0 -89.7 0.0	NCP62	598423	7684721	1102	451	60	155
NCP65 59992 7685485 1097 390 60 155 NCP66 600183 7685564 1098 324 60 155 TRDH14-01 612247.8 7687953.7 1062.6 71.7 -90.0 0.0 TRDH14-02 61233.0 7687802.0 1047.0 58.6 -90.0 0.0 TRDH14-02 61233.7 7687808.5 1062.4 83.9 -89.4 0.0 TRDH14-03 612293.6 768785.6 1062.0 92.8 -89.9 0.0 TRDH14-04 60970.0 7686345.0 1040.0 149.7 -89.1 0.0 TRDH14-05 609595.7 768510.3 1061.0 59.7 -89.9 0.0 TRDH14-07 609653.0 768643.0 1038.0 59.7 -89.7 0.0 TRDH14-07 600704.0 7684805.0 1055.0 73.0 -89.7 0.0 TRDH14-09 60713.0 7684936.0 1024.0 68.3 -89.4 0.0	NCP63	599609	7685245	1099	294	60	155
NCP66 600183 7685564 1098 324 60 155 TRDH14-01 612247.8 7687953.7 1062.6 71.7 -90.0 0.0 TRDH14-02 61233.0 7687802.0 1047.0 58.6 -90.0 0.0 TRDH14-02 61233.57 7687808.5 1062.4 83.9 -89.4 0.0 TRDH14-04 609703.0 7686345.0 1040.0 149.7 -89.1 0.0 TRDH14-05 609595.7 7686510.3 1061.0 59.7 -89.9 0.0 TRDH14-06 609663.0 7686433.0 1038.0 59.7 -89.7 0.0 TRDH14-07 609663.0 768483.0 1056.0 71.4 -89.7 0.0 TRDH14-08 607204.0 7684936.0 1024.0 68.3 -89.4 0.0 TRDH14-107 600761.0 7684936.0 1024.0 68.3 -89.4 0.0 TRDH14-103 600724.0 768567.0 1014.0 182.9 -62.6 <	NCP64	599683	7685354	1096	447	60	155
TRDH14-01 612247.8 7687953.7 1062.6 71.7 -90.0 0.0 TRDH14-02 612339.0 7687802.0 1047.0 58.6 -90.0 0.0 TRDH14-024 612335.7 7687808.5 1062.4 83.9 -89.4 0.0 TRDH14-04 612233.6 7687885.6 1062.0 92.8 -89.9 0.0 TRDH14-04 609703.0 7686310.3 1061.0 59.7 -89.9 0.0 TRDH14-05 609595.7 7686510.3 1061.0 59.7 -89.9 0.0 TRDH14-05 609563.0 7686433.0 1038.0 59.7 -89.7 0.0 TRDH14-05 609663.0 7686433.0 1042.0 111.0 -60.0 331.6 TRDH14-07 609663.0 7684836.0 1055.0 73.0 -89.6 0.0 TRDH14-02 607133.0 7684936.0 1024.0 68.3 -89.4 0.0 TRDH14-10 607150.0 768567.0 1014.0 182.9 -62	NCP65	<mark>599992</mark>	<mark>7685485</mark>	<mark>1097</mark>	<mark>390</mark>	<mark>60</mark>	<mark>155</mark>
TRDH14-02 612339.0 7687802.0 1047.0 58.6 -90.0 0.0 TRDH14-02A 612335.7 7687808.5 1062.4 83.9 -89.4 0.0 TRDH14-03 612293.6 7687885.6 1062.0 92.8 -89.9 0.0 TRDH14-04 609703.0 7686345.0 1040.0 149.7 -89.1 0.0 TRDH14-05 609595.7 7686510.3 1061.0 59.7 -89.9 0.0 TRDH14-06 609653.0 7686433.0 1038.0 59.7 -89.7 0.0 TRDH14-07 609663.0 7686483.0 1056.0 71.4 -89.7 0.0 TRDH14-08 607204.0 7684683.0 1055.0 73.0 -89.6 0.0 TRDH14-10 60761.0 7684936.0 1024.0 68.3 -89.4 0.0 TRDH14-14 600761.0 7685696.0 1080.0 71.2 -89.4 0.0 TRDH14-11 600721.0 7685567.0 1073.0 80.4 -87.6<	NCP66	<mark>600183</mark>	<mark>7685564</mark>	<mark>1098</mark>	<mark>324</mark>	<mark>60</mark>	<mark>155</mark>
TRDH14-02A 612335.7 7687808.5 1062.4 83.9 -89.4 0.0 TRDH14-03 612293.6 7687885.6 1062.0 92.8 -89.9 0.0 TRDH14-04 609703.0 7686345.0 1040.0 149.7 -89.1 0.0 TRDH14-05 609595.7 7686510.3 1061.0 59.7 -89.9 0.0 TRDH14-06 609653.0 7686433.0 1038.0 59.7 -89.7 0.0 TRDH14-07 609663.0 7686463.0 1056.0 71.4 -89.7 0.0 TRDH14-08 607204.0 7684683.0 1055.0 73.0 -89.6 0.0 TRDH14-09 607133.0 7684683.0 1024.0 68.3 -89.4 0.0 TRDH14-10 607061.0 7684936.0 1024.0 68.3 -89.4 0.0 TRDH14-11 600721.0 7685696.0 1080.0 71.2 -89.4 0.0 TRDH14-12 600816.0 7685737.0 1070.0 110.4 -62.	TRDH14-01	612247.8	7687953.7	1062.6	71.7	-90.0	0.0
TRDH14-03 612293.6 7687885.6 1062.0 92.8 -89.9 0.0 TRDH14-04 609703.0 7686345.0 1040.0 149.7 -89.1 0.0 TRDH14-05 609595.7 7686510.3 1061.0 59.7 -89.9 0.0 TRDH14-06 609653.0 7686433.0 1038.0 59.7 -89.7 0.0 TRDH14-07 609663.0 7686433.0 1042.0 111.0 -60.0 331.6 TRDH14-08 607204.0 7684863.0 1055.0 73.0 -89.6 0.0 TRDH14-09 607133.0 7684936.0 1024.0 68.3 -89.4 0.0 TRDH14-10 607061.0 7684936.0 1080.0 71.2 -89.4 0.0 TRDH14-11 607150.0 7684776.0 1014.0 182.9 -62.6 331.4 TRDH14-12 600845.0 7685696.0 1080.0 71.2 -89.4 0.0 TRDH14-12 600816.0 7685737.0 107.0 110.4	TRDH14-02	612339.0	7687802.0	1047.0	58.6	-90.0	0.0
TRDH14-04 609703.0 7686345.0 1040.0 149.7 -89.1 0.0 TRDH14-05 609595.7 7686510.3 1061.0 59.7 -89.9 0.0 TRDH14-06 609653.0 7686433.0 1038.0 59.7 -89.7 0.0 TRDH14-07 609663.0 7686414.0 1042.0 111.0 -60.0 331.6 TRDH14-08 607204.0 7684683.0 1055.0 73.0 -89.6 0.0 TRDH14-09 607133.0 7684805.0 1055.0 73.0 -89.6 0.0 TRDH14-10 607061.0 7684936.0 1024.0 68.3 -89.4 0.0 TRDH14-11 607150.0 7685696.0 1080.0 71.2 -89.4 0.0 TRDH14-12 600845.0 7685696.0 1080.0 71.2 -89.4 0.0 TRDH14-12 600845.0 7685696.0 1073.0 80.4 -87.6 0.0 TRDH14-13 600721.0 7685893.0 1042.0 191.7 -6	TRDH14-02A	612335.7	7687808.5	1062.4	83.9	-89.4	0.0
TRDH14-05 609595.7 7686510.3 1061.0 59.7 -89.9 0.0 TRDH14-06 609653.0 7686433.0 1038.0 59.7 -89.7 0.0 TRDH14-07 609663.0 7686414.0 1042.0 111.0 -60.0 331.6 TRDH14-08 607204.0 7684683.0 1055.0 73.0 -89.6 0.0 TRDH14-09 607133.0 7684805.0 1055.0 73.0 -89.6 0.0 TRDH14-10 607061.0 7684936.0 1024.0 68.3 -89.4 0.0 TRDH14-11 607150.0 768567.0 1014.0 182.9 -62.6 331.4 TRDH14-12 600845.0 768567.0 1073.0 80.4 -87.6 0.0 TRDH14-13 600924.0 7685567.0 1073.0 80.4 -87.6 0.0 TRDH14-14 600816.0 7685893.0 1042.0 191.7 -60.0 150.0 TRDH14-15 600764.0 7685893.0 1081.0 49.2	TRDH14-03	612293.6	7687885.6	1062.0	92.8	-89.9	0.0
TRDH14-06 609653.0 7686433.0 1038.0 59.7 -89.7 0.0 TRDH14-07 609663.0 7686414.0 1042.0 111.0 -60.0 331.6 TRDH14-08 607204.0 7684683.0 1056.0 71.4 -89.7 0.0 TRDH14-09 607133.0 7684936.0 1055.0 73.0 -89.6 0.0 TRDH14-10 607061.0 7684936.0 1024.0 68.3 -89.4 0.0 TRDH14-11 607150.0 7684776.0 1014.0 182.9 -62.6 331.4 TRDH14-12 600845.0 7685696.0 1080.0 71.2 -89.4 0.0 TRDH14-13 600924.0 7685697.0 1073.0 80.4 -87.6 0.0 TRDH14-13 600816.0 7685737.0 1070.0 110.4 -62.0 147.7 TRDH14-14 600758.0 7685893.0 1042.0 191.7 -60.0 150.0 TRDH14-14 600764.0 7685893.0 1081.0 49.2	TRDH14-04	609703.0	7686345.0	1040.0	149.7	-89.1	0.0
TRDH14-07 6609663.0 7686414.0 1042.0 111.0 -60.0 331.6 TRDH14-08 607204.0 7684683.0 1056.0 71.4 -89.7 0.0 TRDH14-09 607133.0 7684805.0 1055.0 73.0 -89.6 0.0 TRDH14-10 607061.0 7684936.0 1024.0 68.3 -89.4 0.0 TRDH14-11 607150.0 7684776.0 1014.0 182.9 -62.6 331.4 TRDH14-12 600845.0 7685696.0 1080.0 71.2 -89.4 0.0 TRDH14-13 600924.0 7685567.0 1073.0 80.4 -87.6 0.0 TRDH14-14 600816.0 7685737.0 1070.0 110.4 -62.0 147.7 TRDH14-14 600764.0 7685893.0 1042.0 191.7 -60.0 150.0 TRDH14-14 600764.0 7685829.0 1083.0 200.7 -58.3 145.6 TRDH14-17 608880.0 7685776.0 102.7 81.2	TRDH14-05	609595.7	7686510.3	1061.0	59.7	-89.9	0.0
TRDH14-08607204.07684683.01056.071.4-89.70.0TRDH14-09607133.07684805.01055.073.0-89.60.0TRDH14-10607061.07684936.01024.068.3-89.40.0TRDH14-11607150.07684776.01014.0182.9-62.6331.4TRDH14-12600845.07685696.01080.071.2-89.40.0TRDH14-13600924.07685567.01073.080.4-87.60.0TRDH14-14600816.07685737.01070.0110.4-62.0147.7TRDH14-15600721.07685893.01042.0191.7-60.0150.0TRDH14-16600764.07685893.01083.0200.7-58.3145.6TRDH14-17608860.07685776.01027.081.2-60.0330.0TRDH14-17608862.07685805.01028.0179.7-60.0330.0MW_001598846.17684767.81102.2265.00-90MW_002598840.07684690.71102.3265.00-90PW_001598816.87684742.01102.3265.00-90MW_01259871.97684712.71102.0211.0330-87	TRDH14-06	609653.0	7686433.0	1038.0	59.7	-89.7	0.0
TRDH14-09607133.07684805.01055.073.0-89.60.0TRDH14-10607061.07684936.01024.068.3-89.40.0TRDH14-11607150.07684776.01014.0182.9-62.6331.4TRDH14-12600845.07685696.01080.071.2-89.40.0TRDH14-13600924.07685567.01073.080.4-87.60.0TRDH14-14600816.07685737.01070.0110.4-62.0147.7TRDH14-15600721.07685893.01042.0191.7-60.0150.0TRDH14-16600764.07685893.01081.049.2-60.0330.0TRDH14-17608880.07685776.01027.081.2-60.0330.0TRDH14-17608862.07685805.01028.0179.7-60.0330.0Mw_001598846.17684767.81102.2265.00-90Mw_002598840.07684742.01102.3265.00-90Mw_012598816.87684742.01102.3265.00-90Mw_012598816.87684742.01102.3265.00-90	TRDH14-07	609663.0	7686414.0	1042.0	111.0	-60.0	331.6
TRDH14-10607061.07684936.01024.068.3-89.40.0TRDH14-11607150.07684776.01014.0182.9-62.6331.4TRDH14-12600845.07685696.01080.071.2-89.40.0TRDH14-13600924.07685567.01073.080.4-87.60.0TRDH14-14600816.07685737.01070.0110.4-62.0147.7TRDH14-15600721.07685893.01042.0191.7-60.0150.0TRDH14-16600758.07685893.01081.049.2-60.0150.0TRDH14-17608880.07685776.01027.081.2-60.0330.0TRDH14-17608862.07685805.01028.0179.7-60.0330.0MW_001598817.17684772.71102.3265.00-90MW_002598816.87684742.01102.3265.00-90MW_010598816.87684742.01102.3265.00-90MW_011598816.87684742.01102.3265.00-90MW_012598816.87684742.01102.3265.00-90MW_012598816.87684742.01102.3265.00-90MW_012598816.87684742.01102.3265.00-90MW_012598816.87684742.01102.3265.00-90MW_012598791.97684712.71102.0211.0330 <td< td=""><td>TRDH14-08</td><td>607204.0</td><td>7684683.0</td><td>1056.0</td><td>71.4</td><td>-89.7</td><td>0.0</td></td<>	TRDH14-08	607204.0	7684683.0	1056.0	71.4	-89.7	0.0
TRDH14-11607150.07684776.01014.0182.9-62.6331.4TRDH14-12600845.07685696.01080.071.2-89.40.0TRDH14-13600924.07685567.01073.080.4-87.60.0TRDH14-14600816.07685737.01070.0110.4-62.0147.7TRDH14-15600721.07685893.01042.0191.7-60.0150.0TRDH14-16600758.07685834.01081.049.2-60.0150.0TRDH14-17608880.07685776.01027.081.2-60.0330.0TRDH14-174608862.07685805.01028.0179.7-60.0330.0MW_001598817.17684772.71102.3265.00-90MW_002598816.87684742.01102.3265.00-90MW_012598791.97684712.71102.3265.00-90	TRDH14-09	607133.0	7684805.0	1055.0	73.0	-89.6	0.0
TRDH14-12600845.07685696.01080.071.2-89.40.0TRDH14-13600924.07685567.01073.080.4-87.60.0TRDH14-14600816.07685737.01070.0110.4-62.0147.7TRDH14-15600721.07685893.01042.0191.7-60.0150.0TRDH14-16600758.07685829.01083.0200.7-58.3145.6TRDH14-17608880.07685776.01027.081.2-60.0330.0TRDH14-174608862.07685805.01028.0179.7-60.0330.0MW_001598846.17684772.71102.3265.00-90MW_002598840.07684742.01102.3265.00-90MW_012598815.87684712.71102.0211.0330-87	TRDH14-10	607061.0	7684936.0	1024.0	68.3	-89.4	0.0
TRDH14-13600924.07685567.01073.080.4-87.60.0TRDH14-14600816.07685737.01070.0110.4-62.0147.7TRDH14-15600721.07685893.01042.0191.7-60.0150.0TRDH14-16600758.07685834.01081.049.2-60.0150.0TRDH14-164600764.07685829.01083.0200.7-58.3145.6TRDH14-17608880.07685776.01027.081.2-60.0330.0TRDH14-174608862.07685805.01028.0179.7-60.0330.0MW_001598846.17684767.81102.2265.00-90MW_002598840.07684690.71102.3265.00-90PW_001598816.87684742.01102.3265.00-90MW_012598791.97684712.71102.0211.0330-87	TRDH14-11	607150.0	7684776.0	1014.0	182.9	-62.6	331.4
TRDH14-14600816.07685737.01070.0110.4-62.0147.7TRDH14-15600721.07685893.01042.0191.7-60.0150.0TRDH14-16600758.07685834.01081.049.2-60.0150.0TRDH14-164600764.07685829.01083.0200.7-58.3145.6TRDH14-174608880.07685776.01027.081.2-60.0330.0TRDH14-174608862.07685805.01028.0179.7-60.0330.0MW_001598846.17684767.81102.2265.00-90MW_002598840.07684690.71102.0180.00-90PW_001598816.87684742.01102.3265.00-90MW_012598791.97684712.71102.0211.0330-87	TRDH14-12	600845.0	7685696.0	1080.0	71.2	-89.4	0.0
TRDH14-15600721.07685893.01042.0191.7-60.0150.0TRDH14-16600758.07685834.01081.049.2-60.0150.0TRDH14-164600764.07685829.01083.0200.7-58.3145.6TRDH14-174608880.07685776.01027.081.2-60.0330.0TRDH14-174608862.07685805.01028.0179.7-60.0330.0MW_001598846.17684767.81102.2265.00-90MW_012598817.17684690.71102.3265.0150-82MW_002598840.07684742.01102.3265.00-90MW_012598791.97684712.71102.0211.0330-87	TRDH14-13	600924.0	7685567.0	1073.0	80.4	-87.6	0.0
TRDH14-16600758.07685834.01081.049.2-60.0150.0TRDH14-16A600764.07685829.01083.0200.7-58.3145.6TRDH14-17608880.07685776.01027.081.2-60.0330.0TRDH14-17A608862.07685805.01028.0179.7-60.0330.0MW_001598846.17684767.81102.2265.00-90MW_010598817.17684790.71102.3265.0150-82MW_002598840.07684690.71102.0180.00-90PW_001598816.87684712.71102.3265.00-90MW_012598791.97684712.71102.0211.0330-87	TRDH14-14	600816.0	7685737.0	1070.0	110.4	-62.0	147.7
TRDH14-16A 600764.0 7685829.0 1083.0 200.7 -58.3 145.6 TRDH14-17 608880.0 7685776.0 1027.0 81.2 -60.0 330.0 TRDH14-17A 608862.0 7685805.0 1028.0 179.7 -60.0 330.0 MW_001 598846.1 7684767.8 1102.2 265.0 0 -90 MW_010 598817.1 7684767.8 1102.3 265.0 150 -82 MW_002 598840.0 7684690.7 1102.0 180.0 0 -90 MW_012 598816.8 7684712.7 1102.3 265.0 0 -90 MW_012 598791.9 7684712.7 1102.0 180.0 0 -90 MW_012 598791.9 7684712.7 1102.0 211.0 330 -87	TRDH14-15	600721.0	7685893.0	1042.0	191.7	-60.0	150.0
TRDH14-17608880.07685776.01027.081.2-60.0330.0TRDH14-17A608862.07685805.01028.0179.7-60.0330.0MW_001598846.17684767.81102.2265.00-90MW_010598817.17684772.71102.3265.0150-82MW_002598840.07684690.71102.0180.00-90PW_001598816.87684742.01102.3265.00-90MW_012598791.97684712.71102.0211.0330-87	TRDH14-16	600758.0	7685834.0	1081.0	49.2	-60.0	150.0
TRDH14-17A608862.07685805.01028.0179.7-60.0330.0MW_001598846.17684767.81102.2265.00-90MW_010598817.17684772.71102.3265.0150-82MW_002598840.07684690.71102.0180.00-90PW_001598816.87684742.01102.3265.00-90MW_012598791.97684712.71102.0211.0330-87	<i>TRDH14-16A</i>	600764.0	7685829.0	1083.0	200.7	-58.3	145.6
MW_001598846.17684767.81102.2265.00-90MW_010598817.17684772.71102.3265.0150-82MW_002598840.07684690.71102.0180.00-90PW_001598816.87684742.01102.3265.00-90MW_012598791.97684712.71102.0211.0330-87	TRDH14-17	608880.0	7685776.0	1027.0	81.2	-60.0	330.0
MW_010598817.17684772.71102.3265.0150-82MW_002598840.07684690.71102.0180.00-90PW_001598816.87684742.01102.3265.00-90MW_012598791.97684712.71102.0211.0330-87	TRDH14-17A	608862.0	7685805.0	1028.0	179.7	-60.0	330.0
MW_002598840.07684690.71102.0180.00-90PW_001598816.87684742.01102.3265.00-90MW_012598791.97684712.71102.0211.0330-87	MW_001	598846.1	7684767.8	1102.2	265.0	0	-90
PW_001 598816.8 7684742.0 1102.3 265.0 0 -90 MW_012 598791.9 7684712.7 1102.0 211.0 330 -87	MW_010	598817.1	7684772.7	1102.3	265.0	150	-82
<i>MW_012</i> 598791.9 7684712.7 1102.0 211.0 330 -87	MW_002	598840.0	7684690.7	1102.0	180.0	0	-90
	PW_001	598816.8	7684742.0	1102.3	265.0	0	-90
PW 002 598760.7 7684684.3 1100.9 363.0 330 -83	MW_012	598791.9	7684712.7	1102.0	211.0	330	-87
	PW_002	598760.7	7684684.3	1100.9	363.0	330	-83

Hole Id	FROM	ТО	Length	Cu _{eq} m%	Intersection
			_		
PW_001	187.0	265.0	78.0	65.3	78m @ 0.75% Cu & 10 g/t Ag drilled down-dip
NCP20A	124.0	159.0	35.0	41.6	35m @ 1.3% Cu & 18g/t Ag
MW012	171	211	30.0	28.7	40m @ 0.63% Cu & 10 g/t Ag drilled down dip
NCP55	145.77	165.82	20.05	20.1	20.05m @ 0.85% Cu & 20g/t Ag
NCP08	125.0	146.9	21.9	20.1	21.9m @ 0.8% Cu & 13g/t Ag
MW_001	97.0	122.0	25.0	17.9	25m @ 0.63% Cu & 10 g/t Ag drilled down-dip
NCP56	164.3	191.8	26.3	16.1	26.5m @ 0.55% Cu & 12 g/t Ag
NCP66	<mark>295.98</mark>	<mark>314.49</mark>	<mark>18.5</mark>	<mark>11.9</mark>	18.5m @ 0.52% & 15 g/t Ag
NCP25	122.0	141.0	19.0	11.8	19m @ 0.5% Cu & 13g/t Ag
NCP63	264.9	283.6	18.7	11.7	18.7m @ 0.53% Cu & 11 g/t Ag
NCP40	269.0	298.0	29.0	11.3	29m @ 0.4% Cu & 3g/t Ag
NCP60	283.6	298.7	15.2	11.1	15.2m @ 0.6% Cu & 13.2 g/t Ag
NCP64	419.1	436.0	16.3	10.4	16.3m @ 0.52% & 14 g/t Ag
NCP45	188.9	204.6	15.7	10.4	15.7m @ 0.5% Cu & 15g/t Ag
TRDH14-07	62.0	87.5	25.5	9.5	25.5m @ 0.4% Cu & 1g/t Ag
NCP42	142.5	157.5	15.0	9.4	15m @ 0.5% Cu & 13g/t Ag
NCP43	157.0	174.8	17.8	8.8	17.8m @ 0.4% Cu & 10g/t Ag
NCP33	228.0	244.7	16.7	8.8	16.7m @ 0.5% Cu & 4g/t Ag
NCP65	<mark>360.52</mark>	<mark>377.22</mark>	<mark>16.7</mark>	<mark>8.7</mark>	16.7m @ 0.44% Cu & 10 g/t Ag
NCP51	221.2	238.9	17.7	8.6	17.7m @ 0.4% Cu & 12g/t Ag
NCP57	277.9	287.2	9.3	8.0	9.3m @ 6.9% Cu & 17 g/t Ag
NCP29	187.0	206.2	19.2	7.8	19.2m @ 0.3% Cu & 8g/t Ag
NCP50	177.9	192.0	14.1	7.6	14.1m @ 0.5% Cu & 11g/t Ag
NCP35	238.0	255.9	17.9	7.5	17.9m @ 0.4% Cu & 6g/t Ag
NCP49	177.8	190.8	12.9	7.2	12.9m @ 0.5% Cu & 13g/t Ag
NCP07	249.0	261.0	12.0	7.0	12m @ 0.5% Cu & 13g/t Ag
NCP38	261.0	272.6	11.6	6.2	11.6m @ 0.5% Cu & 7g/t Ag
TRDH14-11	125.9	140.5	14.6	6.2	14.6m @ 0.4% Cu & 1g/t Ag
NCP18A	280.5	292.2	11.6	6.1	11.6m @ 0.5% Cu & 9g/t Ag

NCP09	108.2	121.3	13.1	5.9	13.1m @ 0.4% Cu & 7g/t Ag	
MW_010	186.0	194.0	8.0	5.7	6.0m @ 0.77% Cu & 21 g/t Ag	•
NCP37	186.0	203.0	17.0	5.5	17m @ 0.3% Cu & 3g/t Ag	•
NCP19	147.3	157.0	9.7	4.8	9.7m @ 0.4% Cu & 10g/t Ag	•
NCP11-B	345.0	353.6	8.6	4.7	8.6m @ 0.5% Cu & 12g/t Ag	•
NCP59	480.2	488.6	8.5	4.8	8.5m @ 0.4% Cu & 12 g/t Ag	
TRDH14-16A	169.2	173.7	4.5	4.4	4.5m @ 0.8% Cu & 4g/t Ag	•
NCP12	215.5	223.4	7.9	4.4	7.9m @ 0.5% Cu & 12g/t Ag	•
NCP10	311.3	319.2	7.9	4.4	7.9m @ 0.5% Cu & 12g/t Ag	•
NCP30	237.0	246.2	9.2	4.2	9.2m @ 0.4% Cu & 9g/t Ag	•
NCP23	424.0	431.7	7.7	4.2	7.7m @ 0.5% Cu & 9g/t Ag	•
NCP26	199.7	208.7	9.0	4.1	8.9m @ 0.4% Cu & 8g/t Ag	•
NCP48	171.2	182.0	10.8	4.0	10.8m @ 0.3% Cu & 6g/t Ag	•
NCP61	147.2	156.3	9.1	3.9	9.1m @ 0.36% Cu & 9 g/t Ag	•
NCP62	430.3	439.2	8.9	3.8	8.9m @ 0.35% Cu & 9 g/t Ag	•
NCP34	398.9	409.5	10.7	3.5	10.7m @ 0.2% Cu & 16g/t Ag	
NCP17	236.8	243.5	6.6	3.2	6.6m @ 0.4% Cu & 11g/t Ag	•
NCP15	192.0	198.9	6.8	3.0	6.8m @ 0.4% Cu & 9g/t Ag	•
NCP24	178.0	191.3	13.3	2.9	13.3m @ 0.2% Cu & 3g/t Ag	•
NCP21	118.0	129.0	11.0	2.9	11m @ 0.2% Cu & 4g/t Ag	•
NCP14	232.0	238.6	6.6	2.6	6.6m @ 0.3% Cu & 10g/t Ag	•
NCP58	206.2	209.8	3.6	2.5	3.6m @ 0.6% Cu & 13 g/t Ag	•
NCP22	144.0	149.6	5.6	2.4	5.6m @ 0.3% Cu & 15g/t Ag	•
NCP46	170.0	175.4	5.4	2.4	5.4m @ 0.4% Cu & 3g/t Ag	•
NCP44	283.0	288.4	5.4	2.3	5.4m @ 0.2% Cu & 26g/t Ag	
NCP27	152.4	156.2	3.8	2.2	3.8m @ 0.5% Cu & 6g/t Ag	
NCP16	188.0	196.2	8.3	2.1	8.3m @ 0.2% Cu & 6g/t Ag	•
NCP28	274.0	279.9	5.9	1.9	5.9m @ 0.3% Cu & 6g/t Ag	•
NCP13	171.4	176.8	5.4	1.4	5.4m @ 0.2% Cu & 2g/t Ag	
NCP39	333.0	338.5	5.5	1.3	5.5m @ 0.2% Cu & 1g/t Ag	•

NCP43	123.6	126.0	2.4	1.3	2.4m @ 0.5% Cu & 9g/t Ag	
NCP35	169.0	175.0	6.0	1.3	6m @ 0.2% Cu & 1g/t Ag	-
NCP36	509.5	514.2	4.7	1.2	4.7m @ 0.2% Cu & 2g/t Ag	-
NCP10	211.0	213.0	2.0	1.0	2m @ 0.4% Cu & 12g/t Ag	-
NCP26	135.0	136.0	1.0	0.8	1m @ 0.7% Cu & 4g/t Ag	-
NCP31A	310.1	311.8	1.7	0.8	1.7m @ 0.3% Cu & 17g/t Ag	-
NCP43	152.0	155.0	3.0	0.8	3m @ 0.2% Cu & 5g/t Ag	-
NCP10	149.0	151.0	2.0	0.8	2m @ 0.4% Cu & 4g/t Ag	-
NCP11-B	338.0	340.1	2.1	0.7	2.1m @ 0.3% Cu & 8g/t Ag	-
NCP52	106.5	108.7	2.2	0.6	2.2m @ 0.2% Cu & 5g/t Ag	-
NCP52	96.0	98.3	2.3	0.6	2.3m @ 0.2% Cu & 4g/t Ag	-
NCP41	435.1	436.5	1.4	0.5	1.4m @ 0.2% Cu & 12g/t Ag	-
Down hole inte	ersections calcu	lated using	a grade cu	It-off 1% Cu	Results sorted by Hole id.	ר
Hole id	FROM	TO	Length	(m)	Intersection	
MW_001	97.0	98.0	1.0		1m @ 1.4% Cu & 14 g/t Ag	
MW_001	106.0	107.0	1.0		1m @ 1.3% Cu & 18 g/t Ag	
MW_001	111.0	112.0	1.0		1m @ 1.1% Cu & 16 g/t Ag	
MW_010	189.0	190.0	1.0		1m @ 2.0% Cu & 22 g/t Ag	
MW_012	178.0	184.0	6.0		6m @ 1.6% Cu & 21 g/t Ag	
MW_012	187.0	190.0	3.0		3m @ 1.1% Cu & 16 g/t Ag	
NCP08	136.2	146.9	10.7		10.7m @ 1.3% Cu & 18g/t Ag	
NCP10	318.0	319.2	1.2		1.2m @ 1.1% Cu & 26g/t Ag	
NCP20A	140 7	158.0	9.3		9.3m @ 3.4% Cu & 30g/t Ag	
	148.7		3.0			
NCP25	148.7	136.0	3.0		3m @ 1% Cu & 15g/t Ag	
NCP25 NCP26			3.0 1.0		3m @ 1% Cu & 15g/t Ag 1m @ 1.3% Cu & 16g/t Ag	
	133.0	136.0				
NCP26	133.0 207.7	136.0 208.7	1.0		1m @ 1.3% Cu & 16g/t Ag	
NCP26 NCP29	133.0 207.7 198.7	136.0 208.7 201.0	1.0 2.3		1m @ 1.3% Cu & 16g/t Ag 2.3m @ 1.1% Cu & 14g/t Ag	
NCP26 NCP29 NCP33	133.0 207.7 198.7 240.2	136.0 208.7 201.0 242.0	1.0 2.3 1.8		1m @ 1.3% Cu & 16g/t Ag 2.3m @ 1.1% Cu & 14g/t Ag 1.8m @ 1% Cu & 12g/t Ag	-

NCP56	188.7	189.4	0.7	0.7m @ 1.69% Cu & 28g/t Ag
PW 001	196	201	5	5m @ 1.2% Cu & 11 g/t Ag
	212	224	11	
PW_001	213	224	11	11m @ 1.1% Cu & 15 g/t Ag
PW_001	228	236	8	8m @ 1.1% Cu & 14 g/t Ag
TRDH14-16A	171.2	173.72	2.5	2.5m @ 1.4% Cu & 11g/t Ag

Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	 Results > 0.2% Cu have been averaged weighted by downhole lengths, and exclusive of internal waste to determine a Cu metre percent average for the holes. A second result with cutoff > 1% Cu has been included to highlight higher grade portions of the drill hole intersections.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	 No aggregation of intercepts has been reported. Where copper equivalent has been calculated it is at current metal prices: 1g/t Ag = 0.0087% Cu.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	 Down hole intersection widths are used throughout. Diamond holes are drilled at 60 degrees with mineralisation typically oriented sub-vertical resulting in a relatively low intersection angle. The hydrogeological percussion drilling was drilled down mineralisation in order to intersect the fracture zones associated with the mineralisation – this results in long-intersections which are noted in the intersection tables. All measurements state that downhole lengths have been used, as the true width has not been suitably established by the current drilling.

method of treatment; metallurgical

mineralised contact

	test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	• 11,400 soil samples, collected across the property have been analysed using a combination of pXRF, ICPMS and partial leach analysis. This data has been used successfully to target portions of the contact deemed to be better mineralised.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive 	 An MRE will be undertaken on receipt of outstanding assays results. Metallurgical test work is currently being undertaken using leach box tests on half core samples designed to better estimate in-situ recoveries. An EIA will be undertaken to secure required permitting ahead of ISCR testing.