

EXCEPTIONAL DRILL-HOLE INTERSECTS COMBINED 170m OF LITHIUM MINERALISATION AT RED MOUNTAIN

Highly successful drilling campaign brings project closer to a maiden resource

Astute Metals NL (ASX: ASE) ("ASE", "Astute" or "the Company") is pleased to report the final batch of assay results for the final two holes of its April 2025 diamond drilling campaign at the 100%-owned Red Mountain Lithium Project in Nevada, USA.

Hole RMDD008 returned six intersections of lithium mineralisation in clay-bearing mudstones siltstones and sandstones, for a combined 170.4m of lithium mineralisation, including:

- <u>33.8m @ 1,130ppm Li / 0.60% Lithium Carbonate Equivalent¹ (LCE)</u> from 34.8m including an internal high-grade zone of <u>10.7m @ 1,320ppm Li / 0.70% LCE</u> from 41.5m; and
- <u>62.4m @ 1,210ppm Li / 0.64% LCE</u> from 152.2m including an internal high-grade zone of <u>27.5m @ 1,421ppm Li / 0.76% LCE</u> from 176.7m.

Drill-hole RMDD004 drilled through a sequence of sub-aerial coarse polymictic conglomerate to breccia, with occasional narrow zones of claystone with low lithium content. This conglomerate is interpreted to be a localised alluvial fan, as lithium-bearing claystone is present at surface up-dip from the drill-hole (Figure 3).

These results complete the assay dataset for the April diamond drilling campaign at Red Mountain. This most recent drilling has been highly successful, delivering both the highest-grade (RMDD003¹²) and the widest (RMDD007¹³) lithium intersections at the project to date, extending the known mineralisation 630m north of the previous northernmost intersection (RMDD003¹²) and to depths of >180 metres below surface (RMDD005¹⁴), as well as proving up lithium mineralisation in the south of the project (RMDD008).

The Company is in the process of designing the next round of drilling at Red Mountain, which will feed into a maiden Mineral Resource Estimate for the project, planned for delivery by the end of CY2025.

Astute Chairman, Tony Leibowitz, said:

"This is a great way to finish what has been a highly successful drilling campaign, with hole RMD008 intersecting more than 170m of lithium mineralisation. The consistent high-grade intercepts seen in the Red Mountain drill-holes reinforce the Project as a standout compared to the majority of lithium clay projects in the USA.

"The drilling so far has delineated a sizeable body of clay-hosted lithium mineralisation over an extensive strike length of 5.6km and extending to depths of 180m, with multiple broad, high-grade intercepts. These results will feed into our planned maiden Mineral Resource Estimate for Red Mountain later this year."

Background

Located in central-eastern Nevada (Figure 4) adjacent to the Grand Army of the Republic Highway (Route 6), which links the regional mining towns of Ely and Tonopah, the Red Mountain Project was staked by Astute in August 2023.

The Project area has broad mapped tertiary lacustrine (lake) sedimentary rocks known locally as the Horse Camp Formation². Elsewhere in the state of Nevada, equivalent rocks host large lithium deposits (see Figure 5) such as Lithium Americas' (NYSE: LAC) 62.1Mt LCE Thacker Pass Project³, American Battery Technology Corporation's (OTCMKTS: ABML) 15.8Mt LCE Tonopah Flats deposit⁴ and American Lithium's (TSX.V: LI) 9.79Mt LCE TLC Lithium Project⁵.

Astute has completed substantial surface sampling campaigns at Red Mountain, which indicate widespread lithium anomalism in soils and confirmed lithium mineralisation in bedrock with some exceptional grades of up to 4,150ppm Li^{2,8} (Figure 2). A total of 11 RC and eight diamond drill holes have been completed at the project for a combined 3,336m, including the April drilling campaign. These campaigns were highly successful, intersecting strong lithium mineralisation in almost every hole.

Scoping leachability testwork on mineralised material from Red Mountain indicates high leachability of lithium of up to 98%, varying with temperature, acid strength and leaching duration, and proof of concept beneficiation test-work has indicated the potential to upgrade the Red Mountain mineralisation^{10,11}.

Figure 1. RMDD008 interpretative cross-section, lithium geochemistry and surface samples.

Figure 2. Red Mountain drill-hole intersections, gridded soil geochemistry.

Results

Hole RMDD008 successfully intersected six zones of lithium mineralised rocks, hosted by clay-bearing mudstone, sandstone and conglomerate.

The intersections are as follows:

13.Im @ 970ppm Li / 0.52% LCE from 6.7m
33.8m @ 1,130ppm Li / 0.6% LCE from 34.8m, Including 10.7m @ 1,320ppm Li / 0.7% LCE from 41.5m and 4.6m @ 1,540ppm Li / 0.82% LCE from 56.3m
39.7m @ 859ppm Li / 0.46% LCE from 102.1m
62.4m @ 1,210ppm Li / 0.64% LCE from 152.2m Including 27.5m @ 1,420ppm Li / 0.76% LCE from 176.7m
13.8m @ 995ppm Li / 0.53% LCE from 224m
7.6m @ 945ppm Li / 0.50% LCE from 242.3m

Hole RMDD004 drilled through a thick sequence of coarse polymictic conglomerate to breccia, with occasional zones of claystone, but did not return any significant lithium assays.

A full table of assay results for RMDD008 and RMDD004 is provided in Appendix 2.

Interpretation

The lithium mineralisation intersected in RMDD008 (Figure 1) is interpreted to be a strike extension of the prospective stratigraphy northward from RMRC001, RMRC009, RMRC008 and RMDD001.

The conglomerate intersected in hole RMDD004 is interpreted to be a localised sub-aerial alluvial fan. The conglomerate is interpreted to grade rapidly from conglomerate through sandstone to finer sediments up-dip, to where lithium-bearing claystone is present at surface with nearby surface sample assays of up to 2,640ppm Li (Figure 3).

Further drilling is planned for this area to more effectively test the extent of lithium-mineralised clays and constrain the limits of the unmineralised conglomerate.

Hole ID	Easting (NAD83)	Northing (NAD83)	orthing NAD83) RL		Azimuth (°)	Depth (m)	
RMDD004	637593	4289988	1738	-50	269	306.3	
RMDD008	637516	4286902	1731	-50	269	249.9	

Table 1. Drill-hole collar details

Figure 3. RMDD004 interpretative cross-section, lithium geochemistry and nearby (+/- 150m off section) rock chip samples.

April Drill Campaign Summary

The six-hole April drilling campaign was designed to test extensions to the previously defined lithium mineralisation along strike, at depth and under alluvial cover. The campaign achieved each of these objectives, which met with or exceeded expectations based on the previous drilling at the project.

These most recent results support that the Red Mountain project has potential to be one of the highestgrade lithium projects in the US. In order to advance the project to a maiden Mineral Resource Estimate, further drilling is required, and the results to date clearly warrant this next phase of work.

Next Steps

The results of the April diamond drilling campaign, in conjunction with previous drilling results from Red Mountain, justify further drilling to support the calculation of a maiden Mineral Resource Estimate (MRE) for the Project. The Company's technical team is currently in the process of designing holes to be drilled in Q3-Q4, with a priority focus on the northern end and other high-grade parts of the project.

The Company aims to complete a maiden MRE for the Project by the end of the 2025 calendar year.

Figure 4. Location of Astute Lithium Projects, and Nevada lithium deposits.

About Lithium Carbonate Equivalent (LCE)

Unlike spodumene concentrate, which is a feedstock, lithium carbonate is a downstream product that may be used directly in battery production or converted to other battery products such as lithium hydroxide.

The Benchmark Mineral Intelligence Lithium Carbonate China Index priced lithium carbonate product at US\$8,651/t⁶ as of 10 July 2025.

Lithium carbonate is the product of many of the most advanced lithium clay projects around the world, including Lithium Americas' (NYSE: LAC) 62.1Mt LCE Thacker Pass Project³, which is currently under construction. Accordingly, exploration results for Red Mountain have been reported as both the standard parts-per-million (ppm) and as % Lithium Carbonate Equivalent (LCE)¹.

- 4 OTCMKTS: ABML 26 February 2023 'Technical Report Summary for The Tonopah Flats Lithium Project, Esmeralda.'
- 5 TSX.V: LI 17 March 2023 'Tonopah Lithium Claims project NI 43-101 technical report Preliminary Economic Assessment'
- 6 Source: Benchmark Mineral Intelligence Lithium Carbonate China Index 12/06/2024
- 7 ASX: ASE 16 December 2024 'Major new zones of Lithium Mineralisation at Red Mountain Project'
- 8 ASX: ASE 8 July 2024 'High-grade rock chip assays extend prospective lithium horizon at Red Mountain Project, USA'
- 9 ASX: ASE 20 January 2025 'Extension of lithium discovery at Red Mountain Project' 10 ASX: ASE 9 December 2024 'Positive initial metallurgical results from Red Mountain'
- II ASX: ASE 2 April 2025 'Beneficiation testwork successfully upgrades mineralisation at Red Mountain Lithium Project'
- 12 ASX: ASE 19 May 2025 'Exceptional lithium intercept extends Red Mountain Discovery'
- BASX: ASE 25 June 2025 'Widest lithium mineralisation intersected at Red Mountain'
- 14 ASX: ASE 29 May 2025 'Two lithium zones intersected in latest drillhole at Red Mountain'

Authorisation

This announcement has been authorised for release by the Board of Astute.

Astute Metals NL Interactive Investor Hub

Engage with Astute Metals through accessing reports, presentations, interviews and other Company content.

Ask questions and browse responses to other investors' questions

Click on <u>https://astutemetals.com/auth/signup</u> and follow the prompts to sign up

More Information

Matt Healy *Executive Director & CEO* <u>mhealy@astutemetals.com</u> +61 (0) 431 683 952 Nicholas Read Media & Investor Relations <u>nicholas@readcorporate.com.au</u> +61 (0) 419 929 046

Competent Persons

The information in this report that relates to Sampling Techniques and Data (Section 1) is based on information compiled by Mr. Matthew Healy, a Competent Person who is a Member of The Australasian Institute of Mining and Metallurgy (AusIMM Member number 303597). Mr. Healy is a full-time employee of Astute Metals NL and is eligible to participate in a Loan Funded Share incentive plan of the Company. Mr. Healy has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Healy consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this report that relates to Reporting of Exploration Results (Section 2) is based on information compiled by Mr. Richard Newport, principal partner of Richard Newport & Associates – Consultant Geoscientists. Mr. Newport is a member of the Australian Institute of Geoscientists and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person under the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Newport consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Lithium Carbonate Equivalent wt%(LCE) has been calculated from Lithium parts-per-million (ppm) by the formula LCE = Li (ppm) x 5.323 /10,000 2 ASX: ASE 27 November 2023 'Outstanding Rock-Chip Assays at Red Mountain Project'

³ NYSE: LAC 31 December 2024 Updated NI 43-101 Technical Report for the Thacker Pass Project

Section 1 - Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialisedindustry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheldXRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensuresample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation tutare Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, suchas where there is coarse gold that has inherentsampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	HQ diamond drilling was undertaken for drill sample collection. Samples were collected on a nominal 5-foot basis or sampled to geological boundaries based on lithological logging. Samples were photographed, half- cored, and despatched to an external lab by an external contractor. Claystone hosted lithium deposits are thought to form as a result of the weathering of lithium-bearing volcanic glass within tertiary-aged tuffaceous lacustrine sediments of the mapped Ts3 unit. Inputs of lithium from geothermal sources have also been proposed.
Drilling techniques	Drill type (e.g. core, reverse circulation, open- holehammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	HQ drilling methods employed. Core was not oriented for this drill hole.
Drill sample recovery	Method of recording and assessing core andchip sample recoveries and results assessed. Measures taken to maximise sample recoveryand ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gainof fine/coarse material.	Sample recovery established by recovery logging and dry sample weights undertaken by independent laboratory prior to sample preparation and analysis Poor drill core recovery at surface and one section of core loss at end of hole. Instances of poor recovery are not expected tomaterially impact interpretation of results
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative innature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	Drill core for the entire hole was logged for lithology bycompany geologists Logging is qualitative Photography of drill core undertaken by contractors in Elko, NV, prior to delivery to external laboratory

Criteria	JORC Code explanation	Commentary
Sub- sampling techniques and sample preparatio n	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotarysplit, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparationtechnique. Quality control procedures adopted for all sub-sampling stages to maximise representivityof samples. Measures taken to ensure that the sampling isrepresentative of the in-situ material collected,including for instance results for field duplicate/second-half sampling.	Core half cored at a third part contractor facility in Elko, NV, and submitted to ALS Laboratories in Elko for preparation and analysis.
Quality of assay data and laboratory tests	 Whether sample sizes are appropriate to the grain size of the material being sampled. The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial ortotal. For geophysical tools, spectrometers, handheldXRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precisionhave been established. 	Drill Samples analysed by method ME-MS61 which is an ICP-MS method employing a 4- acid digest. Rock samples were ME-MS41, a 2- acid digest method. A comparison of aqua-regia and 4-acid digests was undertaken for Red Mountain mineralisation, with no material difference in lithium results identified. Assay quality was monitored using pulp blanks, as well as certified reference materials (CRMs) at a range of lithium grades. Pulp blank results indicated no material contamination of samples from sample preparation or during the analytical process. CRM results were within 3 standard deviations of certified values. No material systematic bias nor other accuracy related issues were identified.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	Sample intervals to be assigned a unique sample identification number prior to sample despatch Lithium-mineralised claystone Certified Reference Materials (standards), pulp blanks and coarse blanks to be inserted into the sample stream at regular intervals to monitor lab accuracy and potential contamination during sample prep and analysis
Location of data points	Accuracy and quality of surveys used to locatedrill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	Drill collar and sample locations determined using hand-held GPS with location reported in NAD83 UTM Zone 11. Expected location accuracy of +/- 10m Downhole survey data yet to be validated. For the purposes of drill sections, drill holes have been plotted at the setup azimuth of 270° (Grid). This is not expected to make a material difference to interpretation of results.

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the MineralResource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	Drill spacing is appropriate for early exploration purposes 5-foot sample interval, or to geological boundaries where appropriate, widely adopted as standard practice in drilling in the USA.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Claystone beds are regionally shallow-dipping at ~20°-45° to the east and varying locally across the Project with some evidence of faulting and potential folding
Sample security	The measures taken to ensure sample security.	Samples stored at secure yard and shed located in township of Currant until delivered by staff or contractors to the core processing contractors at Elko, and then to ALS lab at Elko, NV
Audits or reviews	The results of any audits or reviews of samplingtechniques and data.	Not applicable

Section 2 - Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	Red Mountain Claims held in 100% Astute subsidiary Needles Holdings Inc. Claims located on Federal (BLM) Land Drilling conducted on claims certified by the Bureau of Land Management (BLM)
Exploration done by other parties	Acknowledgment and appraisal of exploration byother parties.	No known previous lithium exploration conducted at Red Mountain Exploration conducted elsewhere in Nevada by other explorers referenced in announcement body text
Geology	Deposit type, geological setting and style of mineralisation.	The principal target deposit style is claystone hosted lithium mineralisation. Claystone hosted lithium deposits are thought to form as a result of the weathering of lithium-bearing volcanic glass within tertiary-aged tuffaceous lacustrine sediments of the mapped Ts3 unit. Lacustrine environments formed as a result of extensional tectonic regime that produced 'basin and range' topography observed across the stateof Nevada. Inputs of lithium from geothermal sources have also been proposed.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Drillhole locations, orientations and drilled depths are tabulated in body report
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shownin detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	Intersections, where quoted are weighted by length. Lengths originally recorded in feet are quoted to the nearest 10cm. Rounding is conducted to 3 significant figures A 500ppm Li cut-off was used to quote headline intersections, with allowance for 10ft of internal dilution by lower grade material. Low grade mineralisation (300-500ppm Li) is present outside of the quoted intersections Intersections are quoted in both lithium ppm and as wt% Lithium Carbonate Equivalent (LCE). LCE is calculated as LCE = Li (ppm) x 5.323 / 10,000, as per industry conventions.

Suite 116, 165 Phillip St, Sydney NSW 2000 | GPO Box 2733, Sydney NSW 2001 +61 (0) 2 8046 2799 | admin@astutemetals.com www.astutemetals.com

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary		
Relationship between mineralisation	These relationships are particularly important in the reporting of Exploration Results.	Insufficient information available due to early exploration status, although interpretation to date is that intersections in this hole		
widths and intercept lengths	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	approximate true width.		
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width notknown').			
Diagrams	Appropriate maps and sections (with scales) andtabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Included in ASX announcement		
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	This release describes all relevant information		
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysicalsurvey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	This release describes all relevant information		
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions orlarge-scale step-out drilling).	Drill results demonstrate further work at the Red Mountain project is warranted.		
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.			

APPENDIX 2 – Red Mountain Drilling Sample Assay Table

Hole ID	From (ft)	To (ft)	Li (ppm)	LCE (%)	Hole ID	From (ft)	To (ft)	Li (ppm)	LCE (%)
RMDD008	18.7	22	357	0.19	RMDD00	8 235	240	445	0.24
RMDD008	22	25	668	0.36	RMDD00	8 240	245	342	0.18
RMDD008	25	30	1150	0.61	RMDD00	8 245	250	269	0.14
RMDD008	30	35	1065	0.57	RMDD00	8 250	255	312	0.17
RMDD008	35	40	1095	0.58	RMDD00	8 255	260	496	0.26
RMDD008	40	45	850	0.45	RMDD00	8 260	265	509	0.27
RMDD008	45	50	995	0.53	RMDD00	8 265	270	503	0.27
RMDD008	50	55	1020	0.54	RMDD00	8 270	275	419	0.22
RMDD008	55	60	1060	0.56	RMDD00	8 275	280	566	0.30
RMDD008	60	65	722	0.38	RMDD00	8 280	285	453	0.24
RMDD008	65	70	340	0.18	RMDD00	8 285	290	342	0.18
RMDD008	70	75	399	0.21	RMDD00	8 290	295	461	0.25
RMDD008	75	80	299	0.16	RMDD00	8 295	300	555	0.30
RMDD008	80	85	278	0.15	RMDD00	8 300	305	703	0.37
RMDD008	85	90	387	0.21	RMDD00	8 305	310	300	0.16
RMDD008	90	95	454	0.24	RMDD00	8 310	315	288	0.15
RMDD008	95	100	479	0.25	RMDD00	8 315	320	262	0.14
RMDD008	100	105	496	0.26	RMDD00	8 320	325	267	0.14
RMDD008	105	110	447	0.24	RMDD00	8 325	330	331	0.18
RMDD008	110	114.1	428	0.23	RMDD00	8 330	335	305	0.16
RMDD008	114.1	119	1165	0.62	RMDD00	8 335	340	654	0.35
RMDD008	119	123	1320	0.70	RMDD00	8 340	345	440	0.23
RMDD008	123	127	740	0.39	RMDD00	8 345	350	543	0.29
RMDD008	127	131	1035	0.55	RMDD00	8 350	356	489	0.26
RMDD008	131	136	892	0.47	RMDD00	8 356	361	810	0.43
RMDD008	136	141	1520	0.81	RMDD00	8 361	367	826	0.44
RMDD008	141	146	1240	0.66	RMDD00	8 367	372.5	979	0.52
RMDD008	146	151.7	1385	0.74	RMDD00	8 372.5	377	878	0.47
RMDD008	151.7	157	1240	0.66	RMDD00	8 377	381	1170	0.62
RMDD008	157	162	1280	0.68	RMDD00	8 381	385	1280	0.68
RMDD008	162	167.7	1315	0.70	RMDD00	8 385	390	1070	0.57
RMDD008	167.7	171	1180	0.63	RMDD00	8 390	395	995	0.53
RMDD008	171	176	1135	0.60	RMDD00	8 395	400	796	0.42
RMDD008	176	181	899	0.48	RMDD00	8 400	405	1035	0.55
RMDD008	181	184.8	942	0.50	RMDD00	8 405	410	951	0.51
RMDD008	184.8	190	1320	0.70	RMDD00	8 410	415	563	0.30
RMDD008	190	194.8	1330	0.71	RMDD00	8 415	420	647	0.34
RMDD008	194.8	200	1965	1.05	RMDD00	8 420	425	739	0.39
RMDD008	200	205	996	0.53	RMDD00	8 425	430	853	0.45
RMDD008	205	210	913	0.49	RMDD00	8 430	435	1125	0.60
RMDD008	210	215	567	0.30	RMDD00	8 435	440	772	0.41
RMDD008	215	220	725	0.39	RMDD00	8 440	445	301	0.16
RMDD008	220	225	753	0.40	RMDD00	8 445	450	607	0.32
RMDD008	225	230	425	0.23	RMDD00	8 450	455	558	0.30
RMDD008	230	235	405	0.22	RMDD00	8 455	460	1850	0.98

APPENDIX 2 – Red Mountain Drilling Sample Assay Table

RMDD008 460 465.2 1580 0.84 RMDD008 685 690 1165 RMDD008 465.2 470.2 273 0.15 RMDD008 690 694 1210	0.62 0.64 0.68
RMDD008 465.2 470.2 273 0.15 RMDD008 690 694 1210	0.64
	0.68
RMDD008 470.2 475 397 0.21 RMDD008 694 698.3 1280	0.00
RMDD008 475 480 304 0.16 RMDD008 698.3 704 543	0.29
RMDD008 480 485 225 0.12 RMDD008 704 710 349	0.19
RMDD008 485 490 178.5 0.10 RMDD008 710 715 279	0.15
RMDD008 490 495 147.5 0.08 RMDD008 715 720 302	0.16
RMDD008 495 499.2 166 0.09 RMDD008 720 725 270	0.14
RMDD008 499.2 505 1240 0.66 RMDD008 725 730 374	0.20
RMDD008 505 510 621 0.33 RMDD008 730 734.8 418	0.22
RMDD008 510 515 678 0.36 RMDD008 734.8 740 1295	0.69
RMDD008 515 520 960 0.51 RMDD008 740 745 1095	0.58
RMDD008 520 525 312 0.17 RMDD008 745 750 972	0.52
RMDD008 525 530 267 0.14 RMDD008 750 755 1300	0.69
RMDD008 530 535 1825 0.97 RMDD008 755 760.2 1160	0.62
RMDD008 535 540 1575 0.84 RMDD008 760.2 765 637	0.34
RMDD008 540 545 2070 1.10 RMDD008 765 770 824	0.44
RMDD008 545 550 305 0.16 RMDD008 770 775 1015	0.54
RMDD008 550 555 476 0.25 RMDD008 775 780 627	0.33
RMDD008 555 560 1975 1.05 RMDD008 780 785 424	0.23
RMDD008 560 565 2300 1.22 RMDD008 785 790 400	0.21
RMDD008 565 570 692 0.37 RMDD008 790 795 327	0.17
RMDD008 570 575 691 0.37 RMDD008 795 800 1150	0.61
RMDD008 575 579.7 215 0.11 RMDD008 800 805 730	0.39
RMDD008 579.7 585 1855 0.99 RMDD008 805 810 365	0.19
RMDD008 585 590 1560 0.83 RMDD008 810 815 867	0.46
RMDD008 590 595 1595 0.85 RMDD008 815 820 1615	0.86
RMDD008 595 600 1350 0.72 RMDD004 0 5 29.8	0.02
RMDD008 600 605 1430 0.76 RMDD004 5 10 28.5	0.02
RMDD008 605 610 1300 0.69 RMDD004 10 15 19.4	0.01
RMDD008 610 615 1380 0.73 RMDD004 15 20 23.3	0.01
RMDD008 615 620 1400 0.75 RMDD004 20 25 20.4	0.01
RMDD000 020 020 1400 0.75 RMDD004 25 30 26.7 PMDD008 625 620 1210 0.70 PMDD004 20 25 0.70	0.01
RIVIDDU00 020 050 1510 0.70 RMDD004 30 35 25.3 PMDD008 630 635 1305 0.74 PMDD004 35 20.0	0.01
RMDD008 630 635 1395 0.74 RMDD004 35 40 20.6 PMDD008 625 640 1200 0.60 PMDD004 40 45 24	0.01
RMDD008 033 040 1300 0.09 RMDD004 40 43 24 PMDD008 640 645 1115 0.50 PMDD004 45 50 18.0	0.01
RMDD008 640 645 115 0.39 RMDD004 45 50 16.9 PMDD008 645 650 1470 0.78 PMDD004 50 55 191	0.01
NUDD000 040 050 1470 0.70 NUDD004 50 55 19.1 PMDD008 650 655 1360 0.72 PMDD004 55 60 20.2	0.01
RMDD008 655 6612 1380 0.72 RMDD004 55 60 20.2	0.01
RMDD008 6612 666 1445 0.77 RMDD004 60 05 21.4	0.01
RMDD008 666 670 1535 0.82 RMDD004 70 75 20.9	0.01
RMDD008 670 675 1255 0.67 RMDD004 75 80 173	0.01
RMDD008 675 680 1285 0.68 RMDD004 80 85 21.9	0.01
RMDD008 680 685 1060 0.56 RMDD004 85 90 24.8	0.01

APPENDIX 2 – Red Mountain Drilling Sample Assay Table

Hole ID	From (ft)	To (ft)	Li (ppm)	LCE (%)	Hole ID	From (ft)	To (ft)	Li (ppm)	LCE (%)
RMDD004	90	95	23.3	0.01	RMDD004	296	301	25.9	0.01
RMDD004	95	100	19.3	0.01	RMDD004	301	306	26.9	0.01
RMDD004	100	103	19.7	0.01	RMDD004	306	311	32.8	0.02
RMDD004	103	105	23.2	0.01	RMDD004	311	316	32.9	0.02
RMDD004	105	110	18.5	0.01	RMDD004	316	319	33.4	0.02
RMDD004	110	114	19.5	0.01	RMDD004	319	325	48	0.03
RMDD004	114	119	26.9	0.01	RMDD004	325	330	46.1	0.02
RMDD004	119	124	24.1	0.01	RMDD004	330	335	41.4	0.02
RMDD004	124	129	29.7	0.02	RMDD004	335	337	52.7	0.03
RMDD004	129	134	33.3	0.02	RMDD004	337	342	42.7	0.02
RMDD004	134	139	22.4	0.01	RMDD004	342	347	39.3	0.02
RMDD004	139	144	29	0.02	RMDD004	347	352	30.6	0.02
RMDD004	144	149	24.9	0.01	RMDD004	352	357	32.6	0.02
RMDD004	149	152	16.1	0.01	RMDD004	357	362	40.2	0.02
RMDD004	152	157	27.7	0.01	RMDD004	362	367	37.3	0.02
RMDD004	157	162	31.7	0.02	RMDD004	367	372	41.7	0.02
RMDD004	162	167	19.5	0.01	RMDD004	372	377	45	0.02
RMDD004	167	172	18.3	0.01	RMDD004	377	382	34.5	0.02
RMDD004	172	177	22.2	0.01	RMDD004	382	387	34.7	0.02
RMDD004	177	180	27	0.01	RMDD004	387	392	27.8	0.01
RMDD004	180	185	19	0.01	RMDD004	392	397	32	0.02
RMDD004	185	187	34.3	0.02	RMDD004	397	402	38.9	0.02
RMDD004	187	192	41.4	0.02	RMDD004	402	407	37.2	0.02
RMDD004	192	196	36.6	0.02	RMDD004	407	412	27.5	0.01
RMDD004	196	201	20.9	0.01	RMDD004	412	417	23.1	0.01
RMDD004	201	206	19	0.01	RMDD004	417	420	46.8	0.02
RMDD004	206	211	20.4	0.01	RMDD004	420	425	40	0.02
RMDD004	211	216	16	0.01	RMDD004	425	430	29.8	0.02
RMDD004	216	221	24.5	0.01	RMDD004	430	433	25	0.01
RMDD004	221	226	24.7	0.01	RMDD004	433	435	41.5	0.02
RMDD004	226	231	23.4	0.01	RMDD004	435	441	27.8	0.01
RMDD004	231	236	23.4	0.01	RMDD004	486	489	41.1	0.02
RMDD004	236	241	38.1	0.02	RMDD004	550	552	37	0.02
RMDD004	241	246	28.3	0.02	RMDD004	591	596	21.7	0.01
RMDD004	246	250	25	0.01	RMDD004	596	601	31.7	0.02
RMDD004	250	255	12.2	0.01	RMDD004	601	607	24.1	0.01
RMDD004	255	260	22.1	0.01	RMDD004	607	612	35.5	0.02
RMDD004	260	264	21.4	0.01	RMDD004	612	617	33.3	0.02
RMDD004	264	266	38.3	0.02	RMDD004	617	622	32.4	0.02
RMDD004	266	271	23.8	0.01	RMDD004	622	626	25.5	0.01
RMDD004	271	276	26.2	0.01	RMDD004	754	756	28.1	0.01
RMDD004	276	281	29.8	0.02	RMDD004	897	899	15.3	0.01
RMDD004	281	286	31.4	0.02	RMDD004	950	955	10.6	0.01
RMDD004	286	291	34.2	0.02	RMDD004	981	984	11.7	0.01
RMDD004	291	296	23.7	0.01					

Suite 116, 165 Phillip St, Sydney NSW 2000 | GPO Box 2733, Sydney NSW 2001 +61 (0) 2 8046 2799 | admin@astutemetals.com