

ASX Announcement

21 July 2025

Extensional Targets Confirmed by Assays at Surprise Copper Projects

Key Highlights:

- Phase 2 drilling program identified new copper mineralisation and extensional targets.
- ASD008 intersected an extensional zone 200m along strike from the Surprise Mine and beneath an outcropping quartz-calcite vein which stretches at least 240m at the surface.
 - 3m at 1.14% Cu from 123m, incl 1m at 2.17% Cu from 124m
- The third drilling phase, expanding the newly identified zones, is being designed.
- In addition to Surpise, AM5 is advancing high priority copper discovery prospects in the broader Mt Isa Project area including Conglomerate Creek, Moonside, Julius and Startle.

Antares Metals Ltd (ASX: AM5) (Antares, AM5 or the Company) is pleased to share the lab assay results relating to the second phase of reverse circulation (RC) drilling at the Surprise Copper Project (Surprise) within the Mt Isa North Project in northwest Queensland.

The laboratory assay results confirm the previously reported¹ pXRF results for the second phase of drilling. The results confirm that **high-grade copper mineralisation is present** in a 240m long target, **only 200m north** and along strike **of the Surprise Mine**. The target is strengthened by an untested outcropping quartz-calcite vein host and artisanal workings along its length. A follow-up phase to test the target along strike, and dip of the current intercept is planned.

The **lab results also confirm the pXRF results** intersected **at Marvel Prospect.** The discovery was made by an **80m wide intersection of disseminated sulphide and chalcopyrite mineralisation in hole ASD015**, 1.2km north of Surprise associated with a large chargeability anomaly. Assay results confirm the presence of copper mineralisation and justify additional drill testing of the target.

Chief Executive Officer, Johan Lambrechts, commented:

"The assay results confirm what the pXRF had identified, and the Company is excited to test both targets with an additional phase of work. The extensional target could significantly enlarge the mineralisation footprint of Surprise, and Marvel represents a separate and distinct copper mineralised opportunity.

"We look forward to continuing our exploration activities and keeping our investors updated as we progress."

ANTARES METALS LIMITED ASX: AM5

SOI: **514.8M** Share Price: **\$0.008** Market Cap: **\$4.1M** Cash: **\$2.1M (31 Mar 25)**

DIRECTORS & MANAGEMENT

Mark Connelly NE Chairman Johan Lambrechts CEO

Bruno Seneque NE Director

Richard Maddocks NE Director

Suzie Foreman CFO & CoSec

CONTACT

Level 1, 43 Ventnor Ave, West Perth, WA, 6005 info@antaresmetals.com.au **antaresmetals.com.au**

 $\mathbb X$ in

¹ ASX Announcement - 3 June 2025 – Antares Discovers New Copper Prospect at Surprise

Figure 1. Location map showing the Surprise and Marvel prospects in relation to the AM5 Mt Isa North Projects.

Surprise 2025 Phase 2 drilling program

Antares completed a 1,384m RC program in May 2025. The holes targeted extensional targets identified by mapping and geophysical surveys, located to the north of the Surprise Mine, extending up to 1.2 km along strike of the known mineralisation. The Phase 1 program completed by the Company in late 2024, intersected exceptional copper grades including¹;

- 4m @ 3.8 % Cu From 71m (ASRC001)
- 11m @ 1.8 % Cu and 1.3 g/t Au from 68m (ASRC002)
- 5m @ 4.7 % Cu and 0.9 g/t Au from 101m (ASRC003)

The second phase of drilling aimed to identify new mineralised zones by testing newly identified targets with a single drill hole in each. Targets that intersect copper mineralisation will then be followed up and expanded upon by subsequent work phases.

Figure 2. Surprise Drilling Plan view showing geophysical anomalies and Phase 3 target areas.

Surprise Extensional Trend

Several phase 2 drillholes intersected copper mineralisation at depth and along strike from the high-grade Surprise Copper Mine. Hole ASD008 intersected **3m @ 1.14% Cu** from 123m beneath an outcropping quartz-calcite vein which stretches at least 240m at the surface. Given the depth of intersection from surface and the 200m distance to the defined mineralisation at Surprise Mine to the south, this newly discovered zone represents a target that has the potential to more than double the area of mineralisation already identified at Surprise.

The targets associated with the Surprise mineralised trend represent a high-grade, structurally controlled mineralisation style, which may likely be pod-like in nature. Identifying mineralisation controls, such as potential plunge directions, will assist with further exploration and drilling programs.

Figure 3: Cross section looking north, through ASD008, displaying the copper assay data

Marvel

Drillhole ASD015 was drilled 1.2km north of the historic Surprise mine and tested a large chargeability anomaly located two hundred metres east of the Surprise trend. AM5 considers the anomaly to be separate and distinct from the high-grade, structurally controlled Surprise mineralisation and represents a new target and mineralisation type.

ASD015 successfully intersected an 80m-wide zone of regular disseminated sulphides and chalcopyrite intervals, validating the exploration methodology used by the Company and demonstrating the presence of copper mineralisation in the target area. Hole ASD015 intersected **7m @ 0.16% Cu** from 161m, including **1m @ 0.46% Cu** from 161m.

As depicted in Figure 2, "Marvel" is distinct from the Surprise extensional trend and exhibits different characteristics, such as having disseminated sulphide style mineralisation and a much wider potentially mineralised zone. The disseminated copper mineralisation style of Marvel may represent a new target style for the project, with other potential analogues in the region.

The results returned from the chemical assays warrant additional exploration and drilling of the mineralised anomaly to ascertain the economic prospectivity.

Future activities

The Company is encouraged by these assay results, which correlate with the pXRF results acquired and previously reported by the Company¹. The Company will commence planning for the third phase of drilling at Surprise, while also progressing and evaluating other prospects on its Mt Isa North project.

Field activities on Conglomerate Creek, Moonside, Julius, Startle and others are ongoing, and the Company will keep our investors informed as results become available.

-ENDS-

This announcement has been approved for release by the Board of Antares Metals Limited.

Enquiries: Johan Lambrechts Chief Executive Officer Antares Metals Limited E: johan@antaresmetals.com.au

Competent Person Statement:

The information in this report that relates to Exploration activities and Exploration Results has been approved by Mr. Matthew Porter, a Competent Person who is a member of The Australasian Institute of Geoscientists and is the Exploration Manager of Antares Metals Limited.

Mr Porter has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Porter consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Information regarding previous exploration results at Surprise are extracted from the report 'Antares Discovers New Copper Prospect at Surprise' created on 3 June 2025. This reports is available to view on www.antaresmetals.com.au or on the ASX website www.asx.com.au under ticker code AM5. The company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and, in the case of estimates of Mineral Resources or Ore Reserves, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcements continue to apply and have not materially changed. The company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announceme

About Antares Metals

Antares Metals is a multi-commodity, Australian-focused explorer with two district-scale exploration hubs. The company employs modern exploration methods and models to deliver cost-effective programs focused on discovery.

Mt Isa North Cu-U Project (Queensland)

- Tenure: 2,003 km² of prime land near Glencore's Mt Isa Operations
- ► Target Commodities: Cu (Copper), Zn (Zinc), Ag (Silver), Pb (Lead), U₃O₈ (Uranium), and REE (Rare Earth Elements)
- **Exploration:** Area has limited historical exploration
- Methodology: Will apply modern exploration models and techniques

Appendix 1: Historical Exploration

Permit ID	Company	Report No.	Year	Commodity	Work Completed
EPM 365 & 367	MIM	cr2495, 2496,	1967-	Cu	Regional stream geochemistry and mapping
		2550, 3489	1968		
EPM 1133	Tipperary	cr3645	1971	U, Cu	Magnetics, radiometrics, historical Cu workings
					noted
EPM 1330	CRA	cr5281, 5439	1975	Cu, U	Mapping, rock chip and stream geochemistry
	Exploration				
EPM 1727	BHP	cr6229	1977	Cu, Pb-Zn-Ag	Mapping, described Surprise mine in production at
					the time
ML 2483	VAM	cr17768	1970	Cu, Au	Drilling
		(Aurotech)			
EPM 1983	CRA	cr8345, 8505,	1980-	Cu, Pb-Zn-Ag	Airborne radiometrics and magnetics, Mapping
	Exploration	9530, 10357,	1981		including location of historical workings, rock chip
		10360			and auger geochemistry
EPM 4375	Pancontinental	cr17113,	1987-	Cu, Au	BLEG stream geochemistry, Surprise mine mapping
		17114	1988		and sampling
EPM 5983, 5984	Sons of Gwalia	cr21767,	1990 -	Au, Cu	Rock chip, stream and soil geochemistry
		21507	1992		
EPM 8299	MIM	cr24253,	1992-	Au, Cu, Pb-Zn-	Stream geochemistry
		25495, 26054,	1995	Ag	
		26551, 27104			
EPM 8914	MIM / Delta	cr25234,	1993-	Cu, Au	Airborne magnetics; ground magnetics follow-up;
	Gold	26039, 26315,	1996		rock chip, stream and soil geochemistry
		26994, 28155,			
		28839			
EPM 9053, 11171,	Gateway /	cr29821,	1997-	Cu, Au	Mapping including historical workings locations;
11203; ML 2483,	Minotaur	31040, 31383	2011		rock chip, stream, soils and costean geochemistry;
2509, 2686, 90102					gradient array and dipole-dipole IP; SIROTEM;
					ground MLEM, FLTEM and ground magnetics; RC
					drilling (47 holes), diamond drilling (4 holes);
					detailed structural geology study
EPM 25538, 25539	Glencore	cr94920,	2015-	Cu, Au	Historical data review; Airborne magnetics and
		94921, 98795,	2019		radiometrics at 50m line spacing; VTEM at 150m
		98805,			line spacing; soil geochemistry
		103527,			
		103805,			
		115540			

Appendix 2 - JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code Explanation	Commentary				
Sampling	Nature and quality of sampling (e.g.,	Surprise 2025 Drilling				
techniques	cut channels, random chips, or	 The Surprise Phase 2 Exploration drilling program 				
	specific specialised industry standard	reported here consists of 10 holes drilled for 1384m of				
	measurement tools appropriate to the	reverse circulation (RC) drilling.				
	minerals under investigation, such as	Sample Representativity				
	down hole gamma sondes, or	RC drilling samples collected during the drilling process				
	handheld XRF instruments, etc.). These	were completed using industry standard techniques,				
	examples should not be taken as	including using an on-board cone splitter. Chip samples				
	limiting the broad meaning of	are collected, sieved and put into chip trays for geological				
	sampling.	logging and storage for later use.				
	Include reference to measures taken to	 Cone splitting is an industry standard sampling device 				
	ensure sample representivity and the	which sub-splits the metre drilled into representative				
	appropriate calibration of any	samples. QAQC measures, including the use of duplicate				
	measurement tools or systems used.	samples, check the suitability of this method to produce				
	Aspects of the determination of	representative samples.				
	, mineralisation that are Material to the	• All sampling lengths and other logging data were recorded				
	Public Report.	in a standard sampling record spreadsheet, including				
	•	from and to measurements, colour, lithology, structures,				
		etc.				
		• Visible sulphide content was logged as well as alteration				
		and weathering.				
		• Industry-standard practice was used in the processing of				
		samples for assay.				
		Sample weights				
		• To monitor sample size and recovery, all intervals from				
		the first hole were weighed (calico and green bags),				
		except the first 6m (collar). All intervals from the				
		remaining holes were visually checked to determine low				
		sample volume for weighing.				
		Assaying				
		• All intervals were assayed using a NITON XL5 portable XRF				
		on dry samples. The "Mining" mode was used to analyse				
		the intervals, and the scan time was 15 seconds.				
		• Samples identified as anomalous from pXRF for all holes				
		were submitted to Bureau Veritas , an ISO certified				
		commercial laboratory in Adelaide, SA.				
		Sample preparation comprised drying and pulverisation				
		prior to analysis.				
		Samples for all holes were submitted for multi-element				
		analysis by lab code MA100, MA101, MA102, Multi-acid				
		digest including Hydrofluoric, Nitric, Perchloric and				
		Hydrochloric acids.				
		• Au was analysed by lab code FA001, 50g Lead collection				
		fire assay (silver used as secondary collector).				
Drilling	Drill type (e.g., core, reverse	RC percussion drilling was performed with a face				
techniques	circulation, open-hole hammer, rotary	sampling hammer bit (bit diameter 5 ¼ inches), and				
	air blast, auger, Bangka, sonic, etc.)	samples were collected via a cone splitter.				
	And details (e.g., core diameter, triple					
	or standard tube, depth of diamond					

Criteria	JORC Code Explanation	Commentary					
	tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).						
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 RC drill chip sample recovery was recorded by visual estimation, in conjunction with weighing of the main sample bags. Any bags visually low or high were weighed to ensure accurate recovery data. Overall estimated recovery was high. All samples were dry. Measures taken to ensure maximum RC sample recoveries included maintaining a clean cyclone and drilling equipment, as well as regular communication with the drillers. 					
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) Photography. The total length and percentage of the relevant intersections logged.	 The drill chips were geologically logged at 1m intervals with detailed recording of lithology, alteration, mineralisation and other observations such as colour, moisture and recovery. Drill chips were collected and sieved before being placed into reference chip trays for visual logging at 1m intervals. All drill intervals were logged. Logging was performed at the time of drilling, and planned drill hole target lengths were adjusted by the geologist during drilling. The geologist also oversaw all sampling and drilling practices. 					
Sub- sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. And whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	 1m Samples were recovered using a rig-mounted cone splitter during drilling into a calico sample bag. The sample target weight was between 2 and 4kg. A standard, blank or duplicate sample was inserted into the sample stream at regular intervals and also at specific intervals based on the geologist's discretion. Standards were quantified industry standards. Duplicate samples were taken using the same sample sub-sample technique as the original sub-sample and inserted at the geologist's discretion. Sample sizes are appropriate for the nature of mineralisation. Quality control was ensured by assaying standard reference material along with the samples and validating the results with the standard certificate. Standard reference material results are within acceptable limits. 					
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations	 All samples were submitted to Bureau Veritas laboratories in Adelaide. QAQC analytical standards were photographed, with the Standard ID removed before placement into sampling bags. The samples were sorted, wet-weighed, dried, and then weighed again. Primary preparation involved crushing and splitting the sample with a riffle splitter where necessary to obtain a pulverised sub-fraction in a vibrating pulveriser. All coarse residues have been retained. Analytical standards (Certified Reference Materials) were 					

Criteria	JORC Code Explanation	Commentary
	factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established.	 inserted at a minimum rate of 1 for every 15 samples, using 10-60g, certified reference material ("CRM") sourced from OREAS. The location of the standards in the sampling sequence is at the discretion of the logging geologist. Standards are selected to match the anticipated assay grade of the samples on either side of the standard in the sampling sequence. Coarse blanks are inserted at a rate of approximately 1 per 15 samples. However, in areas with mineralization, the number of blanks increased. The location of the blanks in the sampling sequence is at the discretion of the blanks in the sampling sequence is at the discretion of the logging geologist with a higher insertion rate in mineralised intervals where grade was interpreted to exceed 1.0%. Field duplicates were completed at a minimum rate of 2 for every 100 samples. Samples for all holes were submitted for multi-element analysis by lab code MA100, MA101, MA102, Multi-acid digest including Hydrofluoric, Nitric, Perchloric and Hydrochloric acids The samples have been analysed by a 50g lead collection fire assay as well as multi-acid digest with an Inductively Coupled Plasma (ICP) Optical Emission Spectrometry finish for multiple elements The lab randomly inserts analytical blanks, standards and duplicates into the client sample batches for laboratory QAQC performance monitoring. All QAQC data was statistically assessed to determine if results were within the certified standard deviations of the batch may be re-assayed. (no re-assays required for the data in the release)
Verification of sampling and assaying Location of data points	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	 No verification outside the Company was completed The lab and Company randomly insert analytical blanks, standards and duplicates into the sample batches for laboratory QAQC performance monitoring. The significant intersections in this release have not been subject to additional sample verification beyond those mentioned above. The collar locations were surveyed by handheld GPS. Downhole surveys were conducted using a OMNIx42 Gyro. The Grid used is GDA94 Zone 54 The topography has been surveyed with 1m accuracy using a drone.

Criteria	JORC Code Explanation	Co	omme	ntary							
		Drill collar data									
			Hole_ID	East_GDA94	North_GDA94	RL	Total_Depth	Azimuth_Gr	id Dip		
			ASD007	395475	7770057	212	200	256	-60		
			ASD008	395521	7770239	198	240	256	-55		
			ASD009	395429	7770348	198	90	256	-55		
			ASD010	395394	7770742	205	60	256	-55		
			ASD012	395304	7770904	202	72	256	-55		
			ASD013	395268	7770973	201	84	256	-55		
			ASD014	395260	7771163	204	84	270	-55		
			ASD015	395383	7771182	196	210	68	-60		
			ASD016	395355	///110/	200	144	256	-55		
Data	Data spacing for reporting of	•	Inel	notes in	this annou	incemer	nt were a	esigned	totar	get	
spacing and	Exploration Results.		area	s with ze	ero drill de	nsity.					
distribution	Whether the data spacing, and	٠	Grac	le contir	nuity of the	targete	d lodes c	annot be	Э		
	distribution is sufficient to establish		dete	rmined	from this d	ata alor	ne.				
	the degree of geological and grade	•	No c	omposi	ting was do	one.					
	continuity appropriate for the Mineral										
	Bosource and Ore Bosory e estimation										
	procedure(s) and classifications										
	applied.										
	Whether sample compositing has been										
	applied.										
Oriontation	Whether the orientation of sampling	•	The	holes we	ere drilled i	perpend	licular to	the man	ned s	strik	
Orientation	achieves unbiased sampling of	-	ofth	o lodos	and surface		apping lit	hologios	pour	Juni	
of data in							opping tit				
relation to	possible structures and the extent to	•	Ine	aip oi th	e tode is ne	ear veru	cat, and s	some no	les w	ere	
geological	which this is known, considering the		drille	ed from	the footwa	ll due to	surface	space co	onstr	aints	
structure	deposit type.	٠	The i	intersec	tion angle	is still a	dequate	due to th	e nea	ar	
	If the relationship between the drilling		verti	cal dip c	of the mine	ralised a	zone.				
	orientation and the orientation of key	•	The	orientati	ion of the c	Irilling is	deemed	appropr	riate a	and	
	mineralised structures is considered to		unhi	ased	ed.						
	have introduced a compling bios, this		unor	ascu.							
	nave introduced a sampling blas, this										
	should be assessed and reported if										
	material.										
Sample	The measures taken to ensure sample	٠	All s	amples	were colle	cted and	d accoun	ted for b	y AM	5	
security	security.		emp	loyees/	consultant	s during	drilling.	All samp	les w	vere	
security	•		hage	red into	calico and	nlastic	hags and	closed v	with c	cabl	
			tion	Somplo	e woro tra	penorto	d to tho lo	busing	oouri	ior	
			005.	Sample		isported		an naing	couli	CI	
			com	pames.	•						
		٠	The	approp	rate manif	est of sa	ample nu	mbers ai	nd a		
			sam	ple subr	nission for	m conta	aining lab	oratory			
			instr	uctions	were subn	nitted to	the labo	ratory. A	ny		
			disc	repancie	es betweer	n sample	e submis	sions an	d sar	nple	
		received were routinely followed up and accounted for									
	The results of any audits or reviews of	_	Noo	udite bo		nducto	d on the	data			
Audits or	according to chain any duals of reviews of	•	INU A	100115 112		muucie	u un the	uala.			
reviews	sampung techniques and data.										

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code Explanation	Commentary							
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	 The Surprise prospect are situated within EPM 28297, approximately 80 km NE of the city of Mount Isa, held by Capella Metals Ltd [Capella Metals Ltd is a subsidiary of Antares Metals Limited]. There are no material encumbrances such as royalties or other agreements. 							
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	•	Historica tabulatec	l explorati I in Appen	on on the dix 1.	e Surpris	e prospec	ct is	
Geology	Deposit type, geological setting and style of mineralisation.	 The prospects occur within rocks of the Leichhardt Superbasin. Copper mineralisation mainly hosted by calcareous metasediments of the Corella Formation. The Corella Formation was deposited in a shallow marine evaporite setting and was subsequently metamorphose amphibolite grade contemporaneously with the intrusion of the Wonga Batholith at between 11 and 1725 Ma. A 25 km long by 1 km wide NW trending belt of metadolerite and metagabbro occurs in the eastern portion of EPM 28297. The Surprise prospect is associated with these roce Segments of the major Mount Remarkable Fau occur in the western part of EPM 28297. This is regional scale domain bounding fault associated with numerous ore bodies in the region and marks the boundary between the Kalkadoon- Leichhardt and Mary Kathleen Domains. The Pinnacle Fault occurs in the eastern part of EP 28297, and is a major structure that separates Leichhardt and Calvert Superbasins. A numbe major NW-SE faults traverse the tenement. AN considers that these structures are important the formation of structurally-controlled 						n is of he 1760 o The cks. ult is a ated PM s the er of M5 t for	
Information	understanding of the exploration results including a tabulation of the following	me	presente figures of	d in this ar the anno	nnounce	ment is s nt.	hown in t	the	
	information for all Material drill holes:	Collar data							
	easting and northing of the drill hole collar	Hole_IC	East_GDA94	North_GDA94	RL 210	Total_Depth	Azimuth_Gri	d Dip	
	elevation or RL (Reduced Level – elevation	ASD007	395475	7770239	198	200	256	-60	
	above sea level in metres) of the drill hole	ASD009	395429	7770348	198	90	256	-55	
	Collar dip and azimuth of the hole	ASD010 ASD011	395411	7770581	195 205	200 60	90 256	-70	
	aip and azimuth of the hole	ASD012	395304	7770904	202	72	256	-55	
	down note tength and interception depth	ASD013	395268	7770973	201	84	256	-55	
	IIULE LETIGLII.	ASD014	395260	7771182	196	210	68	-55	
	on the basis that the information is not Material	ASD016	395355	7771107	200	144	256	-55	
	and this exclusion does not detract from the								

Criteria	JORC Code Explanation	Commentary				
	understanding of the report, the Competent Person should clearly explain why this is the case.					
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	 No Data aggregation was used Assay results from all samples collected are included in this announcement. 				
Relationship	These relationships are particularly important	• The mineralised units are near vertical, and				
between mineralisation widths and intercept lengths	in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known').	drilling was conducted from optimal angles with the mineralised units. The drilling angle is about - 55 degrees, resulting in mineralised intersections slightly longer than the true width. Interpretation of the mineralised units honours the true width.				
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Diagrams relating to the announcement are located in the announcement. 				
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Results from samples deemed anomalous via pXRF were collected during the program and sent for laboratory analysis. The results mentioned in this announcement are specific to drill holes and detailed in the figures of the announcement. All drill hole laboratory assay data for Cu is supplied in appendix 3. A full lab dataset can be requested from the AM5 board. 				
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Historical exploration of the surprise prospect is tabulated in Appendix 1 				
Further work	The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling	 Plans for further work are outlined in the body of the announcement. 				

Criteria JORC Code Explanation

Commentary

areas, provided this information is not commercially sensitive.

Appendix 3: Table of Lab Assay results

ASD007 144 15 20 ASD008 122 128 136 ASD13 34 93 12 ASD007 15 17 44 ASD009 15 16 26 ASD013 38 37 644 ASD007 17 18 10 ASD009 15 17 48 ASD013 38 39 462 ASD007 18 20 143 ASD009 18 194 ASD013 39 40 66 ASD007 21 22 23 114 ASD009 21 21 ASD013 51 50 41 ASD007 22 23 114 ASD010 138 136 318 ASD13 54 64 420 ASD007 23 28 38 ASD10 138 138 370 ASD13 54 63 420 ASD007 23 28 ASD10 138 138 136	Hole ID	From (m)	To (m)	Cu ppm	Hole ID	From (m)	To (m)	Cu ppm	Hole ID	From (m)	To (m)	Cu ppm
ASDOOV 15 16 14 ASDO00 12 120 58 ASDO13 35 36 10 ASDOOV 10 17 44 ASDO09 10 16 ASDO1 37 38 442 ASDOOV 18 19 24 ASDO09 10 18 ASDO15 37 38 442 ASDO07 18 19 24 ASDO09 10 18 19 1040 ASD015 59 45 580 ASDO07 21 422 286 ASD009 120 21 424 ASD010 135 136 ASD015 53 44 1920 ASDO07 22 23 114 ASD010 136 137 282 ASD013 55 54 1920 ASD007 23 24 ASD01 36 370 ASD013 660 4460 ASD007 23 23 ASD010 139 140	ASD007	14	15	20	ASD008	127	128	136	ASD013	34	35	22
ASD007 16 17 44 ASD009 15 16 27 ASD013 36 37 644 ASD007 17 18 18 180 ASD013 38 38 441 ASD007 18 19 20 130 ASD01 38 39 46 ASD007 12 21 416 ASD009 120 6 ASD013 51 55 6 ASD007 22 23 114 ASD010 135 136 316 ASD013 54 53 64 ASD007 22 23 144 ASD010 136 136 316 ASD013 54 56 64 ASD007 23 25 38 ASD010 138 139 3700 ASD013 54 63 64 ASD007 28 88 ASD010 138 139 370 ASD13 64 63 672 ASD00	ASD007	15	16	14	ASD008	128	129	58	ASD013	35	36	10
ASD007 1.7 1.8 1.6 ASD009 1.0 1.7 8.4 ASD013 3.7 3.8 4.12 ASD007 1.8 1.8 1.8 ASD013 3.9 4.6 ASD007 1.9 2.0 1.43.0 ASD009 1.9 1.04 ASD013 3.9 4.6 ASD007 2.0 2.1 4.16 ASD009 1.0 1.2 4.2 ASD013 5.2 5.00 ASD007 2.2 2.3 1.14 ASD010 1.35 1.36 ASD13 5.2 4.5 1.30 ASD007 2.3 2.4 4.20 ASD010 1.37 1.85 ASD13 5.5 6.0 4.2 ASD007 2.7 2.8 ASD101 1.38 1.39 3.70 ASD13 6.6 4.2 ASD007 2.7 2.8 ASD11 3.8 3.6 4.4 ASD13 6.6 4.2 ASD008 4.1 4.2 2.	ASD007	16	17	44	ASD009	15	16	26	ASD013	36	37	644
ASD007 18 19 24 ASD009 17 18 158 ASD013 38 93 46 ASD007 20 1450 ASD009 19 1040 ASD013 50 51 500 ASD007 211 422 286 ASD009 120 60 ASD013 51 52 130 ASD007 221 243 4320 ASD010 134 135 226 ASD013 52 53 130 ASD007 223 244 4320 ASD010 138 138 138 ASD013 52 53 64 ASD007 226 27 38 ASD010 138 139 32003 60 62 73 64 42 ASD007 228 29 42 ASD010 138 139 450 ASD013 63 64 43 ASD007 242 420 ASD01 130 140 420	ASD007	17	18	16	ASD009	16	17	84	ASD013	37	38	412
ASD007 19 20 1430 ASD009 18 19 1040 ASD013 39 40 56 ASD007 20 21 416 ASD009 20 12 4.8 ASD007 122 ASD013 510 522 216 ASD007 224 223 114 ASD10 138 136 ASD13 523 53 149 ASD007 224 225 310 ASD010 137 138 158 ASD13 54 1520 ASD007 224 227 98 ASD10 141 138 158 ASD13 60 61 4420 ASD007 224 229 42 ASD101 138 139 3700 ASD13 61 64 132 ASD007 224 29 42 ASD11 138 144 138 44 138 ASD008 414 42 266 ASD11 138 <td< td=""><td>ASD007</td><td>18</td><td>19</td><td>24</td><td>ASD009</td><td>17</td><td>18</td><td>158</td><td>ASD013</td><td>38</td><td>39</td><td>46</td></td<>	ASD007	18	19	24	ASD009	17	18	158	ASD013	38	39	46
ASD007 20 21 416 AS0009 19 20 6 ASD013 50 51 52 216 ASD007 21 22 23 114 ASD000 124 125 ASD013 52 233 134 ASD010 134 135 226 ASD013 53 54 192 ASD007 23 24 420 ASD010 138 138 ASD013 54 55 64 ASD007 25 26 38 ASD010 138 139 3700 ASD13 60 61 4460 ASD007 28 28 ASD010 138 140 450 ASD13 61 62 735 ASD007 28 42 ASD01 138 140 450 ASD13 64 64 62 735 ASD03 42 43 38 ASD13 54 ASD13 64 64 38 454	ASD007	19	20	1430	ASD009	18	19	1040	ASD013	39	40	56
ASD007 21 22 28 ASD009 20 21 72 ASD013 51 52 213 ASD007 22 23 114 ASD010 134 135 226 ASD013 52 53 130 ASD007 24 25 310 ASD010 136 137 282 ASD013 54 55 64 ASD007 25 26 38 ASD010 138 138 ASD013 660 61 442 ASD007 27 28 88 ASD010 138 130 3700 ASD013 660 61 420 ASD007 28 29 42 ASD010 140 141 124 ASD013 660 672 ASD008 41 42 266 ASD011 38 39 80 ASD015 445 46 73 ASD008 44 43 500 ASD011 39 40	ASD007	20	21	416	ASD009	19	20	6	ASD013	50	51	500
ASD007 2.2 2.3 1.14 ASD010 1.34 1.35 2.26 ASD013 5.2 5.3 1.39 ASD007 2.3 2.4 4.320 ASD010 1.36 1.36 1.38 ASD013 5.5 6.4 ASD007 2.5 2.6 3.8 ASD010 1.36 1.38 1.58 ASD013 5.4 6.50 6.4 ASD007 2.6 2.7 9.8 ASD010 1.38 1.39 3.700 ASD013 6.6 6.2 7.2 ASD007 2.7 2.8 8.8 ASD010 1.40 4.0 ASD013 6.6 6.1 1.20 ASD008 4.1 4.2 2.66 ASD011 3.5 3.6 ASD013 6.4 6.3 1.20 ASD008 4.41 4.0 1.00 ASD011 3.8 3.9 8.0 ASD015 4.6 4.7 8.8 ASD008 4.41 4.50 ASD011 3.8	ASD007	21	22	286	ASD009	20	21	<2	ASD013	51	52	216
ASD007 2.3 2.4 4.300 ASD010 1.36 1.36 3.18 ASD013 5.3 5.4 1.36 ASD007 2.4 2.5 3.0 ASD010 1.36 1.37 2.2 ASD013 5.4 5.5 6.4 ASD007 2.6 2.7 9.8 ASD010 1.38 1.39 7.00 ASD013 6.60 6.12 ASD007 2.7 2.8 9.8 ASD010 1.38 1.40 4.50 ASD013 6.61 4.40 ASD007 2.7 2.8 9.8 ASD010 1.40 1.41 1.41 ASD013 6.61 6.2 7.8 ASD008 4.2 4.33 3.88 ASD011 3.8 5.4 ASD013 6.4 6.45 4.8 6.8 6.8 ASD008 4.4 1.07 ASD011 3.8 3.9 8.0 ASD015 1.13 1.14 4.8 ASD008 4.4 4.8 ASD012	ASD007	22	23	114	ASD010	134	135	226	ASD013	52	53	130
ASD007 24 25 310 ASD010 136 137 282 ASD013 54 55 64 ASD007 25 26 38 ASD010 137 138 138 ASD013 59 60 442 ASD007 28 27 98 ASD010 138 139 1300 ASD013 61 62 736 ASD007 28 29 42 ASD010 140 141 124 ASD013 64 61 420 ASD008 41 42 266 ASD011 35 36 54 ASD013 64 665 672 ASD008 44 45 510 ASD011 37 38 54 ASD015 46 47 858 ASD008 44 45 510 ASD011 39 40 42 ASD015 113 114 40 ASD008 44 45 S101 ASD011	ASD007	23	24	4320	ASD010	135	136	318	ASD013	53	54	1920
ASD007 25 26 38 ASD010 137 138 158 ASD013 59 60 422 ASD007 28 27 98 ASD010 138 139 3700 ASD013 60 61 4460 ASD007 27 28 88 ASD010 140 141 124 ASD013 61 62 736 ASD008 41 42 266 ASD010 140 141 124 ASD015 64 66 672 ASD008 42 43 388 ASD011 36 37 42 ASD015 46 47 858 ASD008 44 45 510 ASD011 39 40 42 ASD15 47 48 48 40 40 ASD008 44 47 1530 ASD012 51 74 ASD015 113 114 970 ASD008 44 490 50	ASD007	24	25	310	ASD010	136	137	282	ASD013	54	55	64
ASD007 26 27 98 ASD010 138 139 3700 ASD013 60 61 4460 ASD007 27 28 88 ASD010 139 140 450 ASD013 61 62 736 ASD007 28 29 42 ASD011 140 141 124 ASD013 62 63 1220 ASD008 41 42 266 ASD011 35 36 54 ASD015 64 138 ASD008 42 43 368 ASD011 37 38 54 ASD015 45 46 358 ASD008 44 45 510 ASD011 39 40 42 ASD015 112 113 114 97 ASD008 46 47 1530 ASD012 50 51 74 ASD015 161 162 472 ASD008 49 50 758 ASD012	ASD007	25	26	38	ASD010	137	138	158	ASD013	59	60	422
ASD007 27 28 88 ASD010 139 140 450 ASD013 61 62 736 ASD007 28 29 42 ASD010 140 141 124 ASD013 62 63 1220 ASD008 41 42 266 ASD011 35 36 54 ASD03 63 64 138 ASD008 42 43 368 ASD011 37 38 54 ASD015 45 46 572 ASD008 44 45 510 ASD011 37 38 54 ASD015 45 46 922 ASD011 39 400 42 ASD015 113 114 114 970 ASD008 45 46 922 ASD012 50 51 74 ASD015 114 115 598 ASD008 47 48 488 ASD012 50 51 74 ASD015	ASD007	26	27	98	ASD010	138	139	3700	ASD013	60	61	4460
ASD007 28 29 42 ASD010 140 141 124 ASD013 62 63 1220 ASD008 41 42 266 ASD011 35 36 54 ASD013 63 64 138 ASD008 42 43 388 ASD011 36 37 42 ASD015 45 46 338 ASD008 44 45 510 ASD011 38 39 80 ASD15 46 47 858 ASD008 44 45 510 ASD011 40 41 64 ASD15 112 113 164 ASD008 46 47 1530 ASD12 49 50 86 ASD15 113 114 115 598 ASD008 48 49 1300 ASD12 51 52 44 ASD15 161 162 472 ASD008 51 52 ASD16 <td< td=""><td>ASD007</td><td>27</td><td>28</td><td>88</td><td>ASD010</td><td>139</td><td>140</td><td>450</td><td>ASD013</td><td>61</td><td>62</td><td>736</td></td<>	ASD007	27	28	88	ASD010	139	140	450	ASD013	61	62	736
ASD008 41 42 266 ASD011 35 36 54 ASD013 63 64 138 ASD008 42 43 368 ASD011 36 37 42 ASD013 64 65 672 ASD008 43 44 1070 ASD011 37 38 54 ASD015 46 47 858 ASD008 44 45 510 ASD011 39 40 42 ASD015 47 48 40 ASD008 46 47 1530 ASD011 40 41 64 ASD15 112 113 114 970 ASD008 47 48 488 ASD012 50 51 74 ASD15 113 114 970 ASD008 49 50 758 ASD12 51 52 44 ASD15 162 163 170 ASD008 51 52 1780 AS	ASD007	28	29	42	ASD010	140	141	124	ASD013	62	63	1220
ASD008 42 43 368 ASD011 36 37 42 ASD03 64 65 672 ASD008 43 44 1070 ASD011 37 38 54 ASD05 45 46 358 ASD008 44 45 510 ASD011 38 39 80 ASD05 47 48 48 ASD008 46 47 1530 ASD011 40 41 64 ASD05 417 48 48 ASD08 47 48 48 ASD012 49 50 56 ASD05 113 114 970 ASD08 48 49 1300 ASD12 51 52 44 ASD15 161 162 163 170 ASD08 50 51 109 ASD12 53 54 20 ASD15 162 163 170 ASD08 51 52 1060 ASD13	ASD008	41	42	266	ASD011	35	36	54	ASD013	63	64	138
ASD008 43 44 1070 ASD011 37 38 54 ASD055 45 46 358 ASD008 44 45 510 ASD011 38 39 80 ASD055 46 47 858 ASD008 45 46 992 ASD011 39 40 42 ASD05 47 48 40 ASD008 46 47 1530 ASD012 49 50 86 ASD05 112 113 144 970 ASD008 48 49 1300 ASD012 50 51 74 ASD05 114 115 598 ASD08 49 50 758 ASD012 51 52 44 ASD05 163 164 320 ASD08 51 52 1750 ASD012 53 54 20 ASD05 163 164 320 ASD08 51 52 153 ASD	ASD008	42	43	368	ASD011	36	37	42	ASD013	64	65	672
ASD08 44 45 510 ASD011 38 39 80 ASD15 46 47 858 ASD08 45 46 992 ASD11 39 40 42 ASD05 47 48 40 ASD08 46 47 1530 ASD11 40 41 64 ASD15 112 113 164 ASD08 48 49 1300 ASD12 49 50 86 ASD15 113 114 970 ASD08 48 49 1300 ASD12 51 52 44 ASD15 161 162 472 ASD08 50 51 1090 ASD12 53 38 ASD15 163 164 320 ASD08 51 52 1750 ASD13 16 17 36 ASD15 164 165 2410 ASD08 52 53 400 ASD13 17 18	ASD008	43	44	1070	ASD011	37	38	54	ASD015	45	46	358
ASD008 45 46 992 ASD011 39 40 42 ASD15 47 48 40 ASD008 46 47 1530 ASD11 40 41 64 ASD015 112 113 164 ASD008 47 48 488 ASD012 49 50 86 ASD15 113 114 970 ASD008 49 50 758 ASD012 50 51 74 ASD15 161 162 472 ASD008 49 50 758 ASD012 52 53 38 ASD015 163 164 320 ASD008 51 52 1750 ASD013 16 177 36 ASD015 164 165 2410 ASD008 53 54 436 ASD013 177 18 48 ASD15 166 167 2170 ASD008 54 55 224 ASD013	ASD008	44	45	510	ASD011	38	39	80	ASD015	46	47	858
ASD008 46 47 1530 ASD11 40 41 64 ASD015 112 113 164 ASD008 47 48 488 ASD12 49 50 86 ASD15 113 114 970 ASD08 48 49 1300 ASD12 50 51 74 ASD15 111 115 598 ASD08 49 50 758 ASD12 51 52 44 ASD15 161 162 472 ASD08 50 51 199 ASD12 52 53 38 ASD15 162 163 170 ASD08 51 52 1750 ASD13 16 177 36 ASD15 166 163 2410 ASD08 52 53 400 ASD013 17 18 48 ASD15 166 167 2170 ASD08 54 55 224 ASD13 19	ASD008	45	46	992	ASD011	39	40	42	ASD015	47	48	40
ASD008 477 488 480 ASD012 499 500 866 ASD015 113 114 970 ASD008 448 49 1300 ASD012 50 51 74 ASD015 114 115 598 ASD008 449 50 758 ASD012 51 52 444 ASD015 161 162 472 ASD008 51 52 1750 ASD012 52 53 38 ASD015 163 164 320 ASD008 51 52 1750 ASD013 16 177 36 ASD015 163 164 320 ASD008 53 54 436 ASD013 177 18 48 ASD015 166 167 2170 ASD008 54 55 224 ASD013 17 18 48 ASD015 166 167 2170 ASD008 54 55 224 <t< td=""><td>ASD008</td><td>46</td><td>47</td><td>1530</td><td>ASD011</td><td>40</td><td>41</td><td>64</td><td>ASD015</td><td>112</td><td>113</td><td>164</td></t<>	ASD008	46	47	1530	ASD011	40	41	64	ASD015	112	113	164
ASD008 448 449 1300 ASD012 50 51 74 ASD15 114 115 598 ASD008 449 50 758 ASD012 51 52 44 ASD15 161 162 472 ASD08 50 51 1090 ASD12 52 53 38 ASD15 162 163 170 ASD08 51 52 1750 ASD12 53 54 20 ASD15 163 164 320 ASD08 52 53 400 ASD13 16 17 36 ASD15 164 165 2410 ASD08 53 54 436 ASD13 17 18 48 ASD15 166 167 2170 ASD08 54 55 224 ASD13 18 19 58 ASD15 166 167 2170 ASD08 55 56 116 ASD13 <td< td=""><td>ASD008</td><td>47</td><td>48</td><td>488</td><td>ASD012</td><td>49</td><td>50</td><td>86</td><td>ASD015</td><td>113</td><td>114</td><td>970</td></td<>	ASD008	47	48	488	ASD012	49	50	86	ASD015	113	114	970
ASD008449500758ASD012515244ASD015161162472ASD008500511090ASD012525338ASD15162163110ASD00851521750ASD012535420ASD015163164320ASD0085253400ASD013161736ASD0151641652410ASD085354436ASD013171848ASD151661664630ASD085558116ASD013192058ASD151661672170ASD085556116ASD132021118ASD015168169266ASD08575832ASD13212296ASD15169170602ASD08596088ASD13232480ASD15171171620ASD086061384ASD13242568ASD15171172102ASD086061384ASD1327284ASD1518118236ASD08626366ASD1327284ASD15184186376ASD086126434ASD1327284ASD15184186376ASD08 <t< td=""><td>ASD008</td><td>48</td><td>49</td><td>1300</td><td>ASD012</td><td>50</td><td>51</td><td>74</td><td>ASD015</td><td>114</td><td>115</td><td>598</td></t<>	ASD008	48	49	1300	ASD012	50	51	74	ASD015	114	115	598
ASD0850511090ASD012525338ASD015162163170ASD0851521750ASD012535420ASD015163164320ASD085253400ASD013161736ASD0151641652410ASD085354436ASD013171848ASD0151661664630ASD085455224ASD03181958ASD0151661672170ASD085556116ASD03192058ASD015166169266ASD085556116ASD132021118ASD15168169266ASD08575832ASD13212296ASD15169170602ASD08596088ASD13232480ASD15171172102ASD086061384ASD13242568ASD1518118236ASD086061384ASD132627524SD1518118236ASD08626366ASD13262752ASD15183184902ASD086162250ASD13262752ASD15183184902ASD0861<	ASD008	49	50	758	ASD012	51	52	44	ASD015	161	162	472
ASD008 51 52 1750 ASD12 53 54 20 ASD15 163 164 320 ASD008 52 53 400 ASD013 16 17 36 ASD015 164 165 2410 ASD008 53 54 436 ASD013 17 18 48 ASD015 166 166 4630 ASD008 54 55 224 ASD013 18 19 58 ASD015 166 167 2170 ASD008 55 56 116 ASD013 19 20 58 ASD015 167 168 1060 ASD008 56 57 46 ASD013 21 22 96 ASD015 169 170 602 ASD008 58 59 3400 ASD013 22 23 20 ASD015 171 172 102 ASD008 60 61 384 ASD013 <td>ASD008</td> <td>50</td> <td>51</td> <td>1090</td> <td>ASD012</td> <td>52</td> <td>53</td> <td>38</td> <td>ASD015</td> <td>162</td> <td>163</td> <td>170</td>	ASD008	50	51	1090	ASD012	52	53	38	ASD015	162	163	170
ASD08 52 53 400 ASD013 16 17 36 ASD015 164 165 2410 ASD08 53 54 436 ASD013 17 18 48 ASD015 165 166 4630 ASD08 54 55 224 ASD013 18 19 58 ASD015 166 167 2170 ASD08 55 56 116 ASD013 19 20 58 ASD015 166 167 2170 ASD08 56 57 46 ASD013 20 211 118 ASD015 168 169 266 ASD08 57 58 32 ASD013 21 22 96 ASD015 170 171 620 ASD08 59 60 88 ASD013 22 23 20 ASD015 171 172 102 ASD08 59 60 88 ASD013	ASD008	51	52	1750	ASD012	53	54	20	ASD015	163	164	320
ASD008 53 54 436 ASD013 17 18 48 ASD015 165 166 4630 ASD008 54 55 224 ASD013 18 19 58 ASD015 166 167 2170 ASD008 55 56 116 ASD013 19 20 58 ASD015 166 167 2170 ASD008 56 57 46 ASD013 20 21 118 ASD015 168 169 266 ASD008 57 58 32 ASD013 21 22 96 ASD015 169 170 602 ASD008 57 58 32 ASD013 22 23 20 ASD015 170 171 620 ASD008 59 60 88 ASD013 24 25 68 ASD015 171 172 173 56 ASD008 61 62 250	ASD008	52	53	400	ASD013	16	17	36	ASD015	164	165	2410
ASD008 54 55 224 ASD013 18 19 58 ASD015 166 167 2170 ASD008 55 56 116 ASD013 19 20 58 ASD015 166 167 2170 ASD008 55 56 116 ASD013 19 20 58 ASD015 166 167 2170 ASD008 56 57 46 ASD013 20 21 118 ASD015 168 169 266 ASD008 57 58 32 ASD013 21 22 96 ASD015 169 170 602 ASD008 58 59 3400 ASD013 22 23 20 ASD015 171 172 102 ASD008 60 61 384 ASD013 24 25 68 ASD015 171 172 173 56 ASD008 61 62 250	ASD008	53	54	436	ASD013	17	18	48	ASD015	165	166	4630
ASD008 55 56 116 ASD013 19 20 58 ASD015 167 168 1060 ASD008 56 57 46 ASD013 20 21 118 ASD015 168 169 266 ASD008 57 58 32 ASD013 21 22 96 ASD015 169 170 602 ASD008 58 59 3400 ASD013 22 23 20 ASD015 170 171 620 ASD008 59 60 88 ASD013 23 24 80 ASD015 171 172 102 ASD008 60 61 384 ASD013 24 25 68 ASD015 181 182 36 ASD008 61 62 250 ASD013 26 27 <2	ASD008	54	55	224	ASD013	18	19	58	ASD015	166	167	2170
ASD08 56 57 46 ASD013 20 21 118 ASD015 168 169 266 ASD008 57 58 32 ASD013 21 22 96 ASD015 169 170 602 ASD008 58 59 3400 ASD013 22 23 20 ASD015 170 171 602 ASD008 58 59 3400 ASD013 22 23 20 ASD015 170 171 620 ASD008 59 60 88 ASD013 23 24 80 ASD015 171 172 102 ASD008 60 61 384 ASD013 24 25 68 ASD015 181 182 36 ASD008 61 62 250 ASD013 26 27 <2	ASD008	55	56	116	ASD013	19	20	58	ASD015	167	168	1060
ASD08 57 58 32 ASD013 21 22 96 ASD015 169 170 602 ASD08 57 58 32 ASD013 21 22 96 ASD015 169 170 602 ASD08 58 59 3400 ASD013 22 23 20 ASD015 170 171 602 ASD08 59 60 88 ASD013 23 24 80 ASD015 171 172 102 ASD08 60 61 384 ASD013 24 25 68 ASD015 171 173 56 ASD08 61 62 250 ASD013 25 26 54 ASD015 181 182 36 ASD08 62 63 66 ASD013 26 27 <2	ASD008	56	57	46	ASD013	20	21	118	ASD015	168	169	266
ASD008 58 59 3400 ASD013 22 23 20 ASD015 170 171 620 ASD008 59 60 88 ASD013 23 24 80 ASD015 171 172 102 ASD008 60 61 384 ASD013 24 25 68 ASD015 171 172 102 ASD008 60 61 384 ASD013 24 25 68 ASD015 171 173 56 ASD008 61 62 250 ASD013 25 26 54 ASD015 181 182 36 ASD008 62 63 66 ASD013 26 27 <2	ASD008	57	58	32	ASD013	21	22	96	ASD015	169	170	602
ASD08 59 60 88 ASD013 23 24 80 ASD015 171 172 102 ASD008 60 61 384 ASD013 23 24 80 ASD015 171 172 102 ASD008 60 61 384 ASD013 24 25 68 ASD015 172 173 56 ASD008 61 62 250 ASD013 25 26 54 ASD015 181 182 36 ASD008 62 63 66 ASD013 26 27 <2	ASD008	58	59	3400	ASD013	22	23	20	ASD015	170	171	620
ASD08 60 61 384 ASD013 24 25 68 ASD015 172 173 56 ASD08 61 62 250 ASD013 24 25 68 ASD015 172 173 56 ASD08 61 62 250 ASD013 25 26 54 ASD015 181 182 36 ASD008 62 63 66 ASD013 26 27 <2	ASD008	59	60	88	ASD013	23	24	80	ASD015	171	172	102
ASDOR 61 62 250 ASD013 25 26 54 ASD015 112 112 36 ASD008 61 62 250 ASD013 25 26 54 ASD015 181 182 36 ASD008 62 63 66 ASD013 26 27 <2	ASD008	60	61	384	ASD013	24	25	68	ASD015	172	173	56
ASD008 62 63 66 ASD013 26 27 <2 ASD015 182 183 112 ASD008 63 64 34 ASD013 26 27 <2	ASD008	61	62	250	ASD013	25	26	54	ASD015	181	182	36
ASD008 63 64 34 ASD013 27 28 4 ASD015 183 184 902 ASD008 121 122 <2	ASD008	62	63	66	ASD013	26	20	<2	ASD015	182	183	112
ASD008 121 122 <2 ASD013 28 29 6 ASD015 184 185 1330 ASD008 121 122 123 <2	ASD008	63	64	34	ASD013	27	28	4	ASD015	183	184	902
ASD008 122 123 <2 ASD013 29 30 6 ASD015 185 186 376 ASD008 122 123 <2	ASD008	121	122	<2	ASD013	28	20	6	ASD015	184	185	1330
ASD008 123 124 5540 ASD013 30 31 4 ASD015 186 187 1800 ASD008 123 124 5540 ASD013 30 31 4 ASD015 186 187 1800 ASD008 124 125 21700 ASD013 31 32 8 ASD015 187 188 852 ASD008 125 126 6820 ASD013 32 33 16 ASD015 188 189 448 ASD008 126 127 180 ASD013 33 34 32 ASD015 189 190 150	ASDOUG	100	122	~ <u>~</u> ~?	ASD013	20	30	6	ASD015	185	186	376
ASD008 124 125 21700 ASD013 31 32 8 ASD015 187 188 852 ASD008 125 126 6820 ASD013 32 33 16 ASD015 188 189 448 ASD008 125 126 6820 ASD013 32 33 16 ASD015 189 448 ASD008 126 127 180 ASD013 33 34 32 ASD015 189 190 150		100	123	5540	ASD013	20	21	1	ASD015	105	197	1200
ASD008 125 126 6820 ASD013 32 33 16 ASD015 188 189 448 ASD008 126 127 180 ASD013 33 34 32 ASD015 189 100 150		123	124	21700	ASD013	30	32	4 8	ASD015	187	189	852
ASD008 126 127 180 ASD013 32 33 10 ASD015 180 100 100 440		124	125	6820	ASD013	32	32	16	ASD015	188	189	448
	ASDOOR	125	120	180	ASD013	32	34	30	ASD015	180	100	150