ASX Announcement

30 July 2025

JORC Resource – Llahuin Copper-Gold Project Chile

Highlights:

- Mineral Resource Estimate (MRE) for the Llahuin Copper-Gold Project of 218Mt at an average grade of 0.38% CuEq
- MRE is across three deposits, with strong potential to define further resources (refer new Exploration Target)
- Progressing towards mine scale open pit configuration

Southern Hemisphere Mining ("Southern Hemisphere" or "the Company") (ASX: SUH, FWB: NK4) is pleased to announce a JORC Mineral Resource Estimate ("MRE") update for its Llahuin Copper-Gold-Molybdenum Project ("Llahuin Project") in central Chile.

Executive Summary

The MRE totals **218Mt at an average grade of 0.38% CuEq** (at a 0.22% CuEq cutoff grade) as tabulated below and includes 496,600t of Copper 654,900oz of Gold and 12,500t of Molybdenum.

Zone	Measured (Mt) (CuEq%)	Indicated (Mt) (CuEq%)	Total Measured & Indicated (Mt) (CuEq%)	Inferred (Mt) (CuEq%)
Central Porphyry	90.9 @ 0.42%	10.2 @ 0.33%	101.1 @0. <mark>41%</mark>	24.5 @ 0.31%
Cerro	41.9 @ 0.40%	4.9 @ 0.32%	46.8@0. <mark>39%</mark>	13.7 @ 0.32%
Ferro	19.1 @ 0.32%	7.1 @ 0.34%	26.2@ 0.32 <mark>%</mark>	5.9 @ 0.32%
Total (rounded)	151.9 @ 0.40%	22.2 @ 0.33%	174.1 @ 0.3 <mark>9%</mark>	44.1 @ 0.31%
Total Measured.	218.2 @ 0.38%			

Resources are reported above a copper equivalent (CuEq) cut-off grade of 0.22% CuEq. The CuEq calculation is based on metal prices of US\$3.50/lb Cu, US\$3,000/oz Au, and US\$20/lb Mo. No recoveries have been used as metallurgical testwork is still to be optimised. Preliminary metallurgical recoveries from closed circuit flotation testwork confirmed no deleterious elements: Cu 84–91%, Au 41–57%, Mo ~14–56%. CuEq formula: Cu % + (Au g/t × 1.25) + (Mo % × 5.7).

Metal recoveries have not been applied in the CuEq calculation which is based solely on metal prices. The CuEq is provided as a comparative tool only and should not be used for economic valuation.

Southern Hemisphere's Chairman Mr Stowell commented:

"We are delighted to report this Mineral Resource update which is a compliment to our team's work over the past 4 years at Llahuin.

The JORC Resource underpins the future potential of this project over a substantial strike of ~4km with our shallow drilling adding to the from- surface resources and prospects. This does two things, first: to continue advancing towards mine scale and secondly: the potential of this system that can produce large tonnages at surface over such strike length has a high probability of substantial copper endowment at higher grades deeper. We will initially test this at the Curiosity-Southern Porphyry scheduled for drilling in Q4 2025 with FMR Resources Limited (ASX: FMR).

We see considerable scope for resource growth at Cerro-Ferro including the Ferro West MT target, and the recent discovery at Ferro South given shallow drilling to date in these areas. Our Exploration Target is ~260-340Mt in addition to the 218Mt JORC Resource".

A large proportion of the recent drilling has consisted of in-fill drilling, which resulted in upgrading a significant amount of material previously classified as Indicated to the **Measured Resource** category. The resource now stands at **218Mt** grading at **0.38% CuEq** (at a 0.22% CuEq lower cut-off).

Drilling in recent years has focused on extending the Cerro-Ferro deposit which now demonstrates with soil geochemistry that it is part of one system. A revised drilling orientation was designed to intersect more of the high-grade NNE trending, ESE dipping vein systems which host the gold at Cerro.

Recent interpretation of the drilling data has identified key areas for higher grade depth extensions of known mineralization for future deeper diamond drilling. The Ferro South discovery was made in late 2024, and due to the consistent thickness and grade became an additional focus area to establish a maiden JORC-compliant resource.

Exploration Target

In addition to the current MRE of 218Mt @ 0.38% CuEq (at a 0.22% CuEq cut-off), the Company has delineated an Exploration Target of between 260Mt and 340Mt, with grades ranging from 0.20% to 0.30% Cu, 0.08 to 0.10g/t Au, and 50 to 60ppm Mo.

This Exploration Target is exclusive of the current MRE and excludes the Curiosity-Southern Porphyry Target. Drilling of the Curiosity-Southern Porphyry is scheduled for Q4 2025.

Refer page 15 for full details.

Llahuin Copper-Gold-Moly Project Location, Resource Block Model Cross Sections and Plan Views.

The June 2025 MRE update includes the most recent drilling up to January 2025. The Company engaged Hyland Geological and Mining Consultants ("HGMC") to complete the MRE for the Llahuin Project. The Llahuin MRE is reported in accordance with the JORC (2012) Code and is detailed in Table 1 attached to this announcement by resource classification, and illustrative plans and cross sections are shown below. Mr Hyland is also the relevant Competent Person as defined in the JORC (2012) Code, for the reporting of the Llahuin Exploration Target.

Figure 1. Location Map.

Figure 2. Llahuin Total Resources 0.2% CuEq grade shell (Looking NE). Grid size 0.5km x 0.5km.

Figure 3. Concession outline, deposit locations and section lines (Figure 4 – Central Deposit cross section, Figure 5 - Cerro-Ferro long section and Figure 9 -Ferro South cross section).

Figure 4. Central Deposit cross section showing ore blocks by grade range (Refer Figure 3).

Figure 5. Cerro-Ferro long section (Refer Figure 3).

Figure 6. Central Deposit Block Model resource categories. Grid size 250m x 250m (yellow = measured, pink = indicated, light blue = inferred and dark blue = unclassified).

Figure 7. Cerro Block Model resource categories, looking ESE (125 degrees). Grid size 250m x 250m (yellow = measured, pink = indicated, light blue = inferred and dark blue = unclassified).

Figure 8. Ferro Block Model resource categories. (Looking West), grid size 250m x 250m. (yellow = measured, pink = indicated, light blue = inferred and dark blue = unclassified).

Results at Llahuin continue to demonstrate consistency of thickness, with the depth from surface to the current vertical limit still limited by drilling. Only Central has been systematically drilled well below 200m vertical with copper-gold-moly mineralisation still remaining open at depth.

Figure 9. Ferro South Block Model cross section showing ore blocks by grade range (Refer Figure 3).

Measured, Indicated and Inferred resources as at June 2025 the data cut-off date:

A cut-off grade of 0.22% CuEq was selected to report the resource as the resultant head grade of 0.38% CuEq is considered to have a reasonable likelihood of being economic based upon internal cost and revenue calculations made by the Company.

TOTAL MEASURED RESOURCES									
CuEq % Cut-off	Tonnes million	Cu %	Au g/t	Мо %	CuEq %				
0.20	160.1	0.24	0.10	0.01	0.39				
0.22	151.9	0.24	0.10	0.01	0.40				
0.25	137.0	0.26	0.11	0.01	0.42				

TOTAL INDICATED RESOURCES								
CuEq % Cut-off	Tonnes million	Cu %	Au g/t	Mo %	CuEq %			
0.20	25.9	0.19	0.07	0.01	0.31			
0.22	22.1	0.20	0.08	0.01	0.33			
0.25	17.1	0.21	0.09	0.01	0.36			

TOTAL MEASURED AND INDICATED RESOURCES										
CuEq % Cut-off	Tonnes million	Cu%	Au g/t	Mo%	CuEq%					
0.20	186.1	0.23	0.09	0.01	0.38					
0.22	174.0	0.24	0.10	0.01	0.39					
0.25	154.1	0.25	0.10	0.01	0.41					

TOTAL INFERRED RESOURCES										
CuEq % Cut-off	Tonnes million	Cu %	Au g/t	Мо %	CuEq %					
0.20	50.9	0.18	0.07	0.01	0.30					
0.22	44.0	0.19	0.07	0.01	0.31					
0.25	33.0	0.20	0.08	0.01	0.34					

Zone tonnage at 0.22% CuEq lower cut-off included in Resource Estimate - Grades shown are CuEq %

Zone	Measured (Mt)	Indicated (Mt)	Total Measured & Indicated (Mt)	Inferred (Mt)
Central Porphyry	<u>90.9 @ 0.42%</u>	<u>10.2 @ 0.33%</u>	101.1 @ 0.41%	24.5 @ 0.31%
Cerro	<u>41.9 @ 0.40%</u>	<u>4.9 @ 0.32%</u>	46.8 @ 0.39%	<u>13.7 @ 0.32%</u>
Ferro	<u>19.1 @ 0.32%</u>	7.1 @ 0.34%	26.2 @ 0.32%	5.9 @ 0.32%
Total (rounded)	151.9 @ 0.40%	22.2 @ 0.33%	174.1 @ 0.39%	44.1 @ 0.31%
Total Measured,	218.2 @ 0.38%			

Resources are reported above a copper equivalent (CuEq) cut-off grade of 0.22% CuEq. The CuEq calculation is based on metal prices of US\$3.50/lb Cu, US\$3,000/oz Au, and US\$20/lb Mo. No recoveries have been used as metallurgical testwork is still to be optimised. Preliminary metallurgical recoveries from closed circuit flotation testwork confirmed no deleterious elements: Cu 84–91%, Au 41–57%, Mo ~14–56%. CuEq formula: Cu % + (Au g/t × 1.25) + (Mo % × 5.7).

Metal recoveries have not been applied in the CuEq calculation which is based solely on metal prices. The CuEq is provided as a comparative tool only and should not be used for economic valuation.

Contained Meta	l Summary	based on	0.22%	CuEq	lower	cut-off
-----------------------	-----------	----------	-------	------	-------	---------

Resource Category	Copper (t)	Cu (%)	Gold (oz)	Au (g/t)	Moly (t)	Mo (%)
Measured	371,800	0.24	494,500	0.10	8,700	0.006
Indicated	43,100	0.20	55,400	0.08	1,400	0.006
Inferred	81,700	0.19	105,000	0.07	2,400	0.005
Total	496,600		654,900		12,500	

(* Rounding errors may be present)

Figure 10. View from top of Curiosity-Southern Porphyry over Llahuin (Looking NE) with Ferro drill pads in the hill opposite.

Curiosity-Southern Porphyry is a large target south of Ferro that has been studied with a wide variety of geophysical, magnetics, and litho-geochemistry techniques and all confirm a substantial target. Southern Hemisphere has joint ventured the deep drilling of this target with FMR Resources Limited (ASX: FMR) backed by the Creasy Group. Drilling commencing Q4 2025.

Figure 11. 3D view of the Llahuin Project, drilling to date forming the basis of the JORC Resource, and the Southern Porphyry Target (under JV with FMR) showing 3D inversion model resistivity shells from magnetotelluric data. (Blue tenement outline is FMR JV).

The following table is a summary of the Measured, Indicated and Inferred resources as at June 2025 the data using a Copper Only (Cu%) lower cut-off basis:

A cut-off grade of 0.20% Cu was selected to report the copper only basis resource to confirm the copper metal content is of significant quantity and also demonstrates reasonable prospects for economic exploitation based on the aforementioned working internal cost and revenue estimates.

AREA	CLASS	CUT-OFF	VOLUME	SUMMARY	CUPC1	AU1	MOPC1	CUEQ1
Name	RCAT	(Cu%)	Cubic Metres	Tonnes	(Cu%)	(Au g/t)	(Mo%)	(CuEq%)
Central	1 (Meas)	0.20	25,760,000	68,420,000	0.32	0.10	0.01	0.47
Central	2 (Ind)	0.20	1,940,000	5,180,000	0.27	0.07	0.01	0.39
Central	3 (Inf)	0.20	3,760,000	10,050,000	0.25	0.06	0.01	0.36
Central	Total	0.20	31,460,000	83,660,000	0.31	0.09	0.01	0.45
Cerro	1 (Meas)	0.20	5,640,000	14,640,000	0.26	0.15	0.01	0.48
Cerro	2 (Ind)	0.20	360,000	960,000	0.25	0.12	0.01	0.42
Cerro	3 (Inf)	0.20	660,000	1,740,000	0.24	0.15	0.01	0.45
Cerro	Total	0.20	6,660,000	17,340,000	0.26	0.15	0.01	0.48
Ferro	1 (Meas)	0.20	2,200,000	5,860,000	0.25	0.10	0.01	0.40
Ferro	2 (Ind)	0.20	780,000	2,060,000	0.28	0.11	0.01	0.46
Ferro	3 (Inf)	0.20	790,000	2,110,000	0.26	0.10	0.01	0.37
Ferro	Total	0.20	3,770,000	10,030,000	0.26	0.10	0.01	0.40

ASX Listing Rule 5.8.1 Summary

Southern Hemisphere Mining Limited ("Southern Hemisphere" or "the Company") (ASX: SUH) is pleased to provide a comprehensive summary of the updated Mineral Resource Estimate ("MRE") for its Llahuin Copper-Gold Project ("Llahuin Project"), located in the Coquimbo Region of central Chile.

This summary is provided to comply with ASX Listing Rule 5.8.1 and is based on the updated JORC Table 1 (June 2025) and supporting technical data.

Project Description

Location

The Llahuin Project is located close to the city of Illapel, in the Coquimbo Region, 350km north of Santiago in Chile, at an elevation of ~1,300 metres above sea level. The area is well served by infrastructure, including roads, and is also just 5km from the electricity grid and 20km from the nearest sealed airstrip. In addition, a disused railway passes through the property. Despite the semi-arid climate, the Llahuin Project is not in a critical water vulnerable area, and although there has been a severe drought over recent years the Company has intersected water (non-potable) in all holes at an average depth of 60m. Nearby ports include Coquimbo, some 200km by road to the NW, and which supports the Andacollo operation of Teck, and Los Vilos, 150km by road to the south-west, which supports the Los Pelambres mine, owned 60% by Antofagasta PLC. Being in a recognised mining district (and country), there is ready access to skilled services and suppliers, as well as personnel, from unskilled labour to professionals.

Figure 12. Central and Northern Chile with the Llahuin Copper-Gold Project showing metallogenic belts, significant deposits, and interpreted structures.

Regional Setting

Llahuin is located on a SE-trending structure that appears to terminate the southern end of the Eocene/Oligocene belt (which hosts Escondida to the north), and the northern end of the Miocene belt, which hosts Los Pelambres 66km to the SE amongst many other copper deposits. These structures are important for localising intrusive complexes and hence mineralisation.

Overprinting relationships indicate at least two stages of mineralisation, with at least the Central Porphyry having an epithermal overprint.

The deformed Early Cretaceous volcano-sedimentary rocks include the Arqueros Formation; comprising volcanic flows and andesitic breccias with interbedded sandstone and epiclastic breccias; and the concordant Quebrada Marquesa Formation; comprising chemical and clastic sediments, including marls, shales, sandstones, conglomerates and gypsum. The volcano-sedimentary units form an east-dipping homocline, and are cut by three main fault sets, namely NE-SW, N-S and NW-SE. These are generally steeply dipping and are considered important as structure appears to have played a major part in controlling the location of the major intrusives.

Geology and Geological Interpretation

The Llahuin Copper-Gold Project is a porphyry copper-gold-molybdenum system with associated IOCG-style mineralisation, hosted within Cretaceous intrusive stocks and surrounding volcanic units. Three main zones comprise the Mineral Resource: Central Porphyry, Cerro De Oro, and Ferrocarril. Detailed mapping, structural interpretation, drone magnetics, IP Survey, geochemical sampling and recent Audio-Magnetotelluric (AMT) surveys have refined the structural and lithological controls, confirming an extensive porphyry footprint consistent with Andean porphyry deposits. High-grade mineralisation is associated with well-developed quartz stockwork and potassic alteration within dioritic and granodioritic intrusions.

Porphyry-style Cu-Au-Mo mineralisation occurs along a +2.5km N-S strike (open north and south, with a total strike length of up 6km). These zones are coincident with a north-south trending valley, potentially reflecting weathering of more regressive units or a structure.

Figure 13. – Location Map showing the Llahuin Cerro and Ferro and Ferro South Zones 2024 drilling in red, 2023 drilling in white, prior drill collars in black, and geochemistry.

Drilling Techniques, Data Density and Other Work

Llahuin was initially acquired in July 2011 by Southern Hemisphere through an intermediary from Antofagasta PLC. Drilling completed across the total project to date comprises 296 holes for 64,503m.

The deposit RC and Diamond drilling breakdown is provided below.

Deposit	Holes	Diamond (m)	RC (m)
Central	107	16,085	14,675
Cerro	113	4,535	14,762
Ferro	61	2,943	8,838
Total	281	23,563	38,275
T-A-LODIL LOO. A4 A4	NO		

Total DDH and RC: 61,838m

The above drilling supports the current estimate, comprising HQ3 triple-tube diamond core drilling and face-sampling RC drilling with 5.25-inch bits. Collars were surveyed by licensed Chilean surveyors using RTK DGPS with centimetre precision. Downhole gyroscopic surveys were completed for all recent diamond holes to ensure minimal deviation. Core orientation was routinely conducted using Reflex digital tools to facilitate structural logging for more recent diamond drilling.

Drilling density in key resource areas ranges from 20–40m for Measured and Indicated classifications, and up to 100m for Inferred zones.

In addition to drilling Southern Hemisphere has completed extensive geochemical and geophysical surveys at Llahuin, including detailed magnetics (MAG), induced polarisation (IP), and magnetotellurics (MT). These datasets have indicated a large "blind" porphyry-style target at the southern end of the Llahuin Project named the Curiosity-Southern Porphyry Target. This target is defined by a coincident magnetic anomaly, IP resistivity anomaly, and MT resistivity anomaly. The target is modelled as a circular feature 1.5km – 2km in diameter and centered approximately 1,000m below surface.

Sampling and Sub-Sampling Techniques

Diamond core was half-cut with a diamond saw, with consistent retention of half-core for reference. RC samples were split at the rig via a cyclone and riffle splitter to achieve representative 2–3kg subsamples. Intervals were predominantly 1–2m, adjusted where geological contacts required. Sample preparation was conducted by ALS Santiago under strict chain-of-custody, involving drying, crushing to <2 mm, and pulverising to >85% passing -75 μ m.

A robust QA/QC protocol included insertion of blanks, duplicates, and certified reference standards at a frequency exceeding 5% of total samples. Umpire check assays were undertaken at a secondary independent laboratory.

Sample Analysis Methods

Gold analyses were conducted by 30g fire assay (AA or ICP-MS finish). Multi-element analyses for copper, molybdenum, and trace elements employed four-acid digestion with ICP-OES or ICP-MS finish. ALS Santiago holds ISO 9001 and ISO/IEC 17025 accreditation. QA/QC results confirm high analytical precision and accuracy across campaigns.

Estimation Methodology

The updated MRE was estimated within 3D wireframes constructed using geological, structural, and assay data, guided by grade shells at nominal 0.1% Cu and 0.1 g/t Au thresholds. Ordinary Kriging interpolation was used for copper, gold, and molybdenum grades within a parent block size of 10 m (E) x 10 m (N) x 5 m (RL). Variogram models and search strategies were optimised for each domain.

Validation involved swath plots, statistical comparisons to input composites, and visual inspection of grade distributions.

Metallurgy

Metallurgical recoveries based on historic test work results by ASMIN and analysis by Sedgman:

- Recoveries of copper vary between 75% Cu and 91% Cu with the weighted average of the results being 84% Cu, which is a typically acceptable commercial level.
- Recoveries of gold vary between 41% Au and 57% Au, which is in line with expectations given the relatively low gold grades within the deposit, and noting a constant tail. (so higher grade would expect higher recovery).
- Recoveries of molybdenum vary between 14% and 56% Molybdenum, which would be expected to increase with the addition of specialized moly reagents.

It is the opinion of the Company and the Competent Person that all elements and products included in the metal equivalent formula have a reasonable potential to be recovered and sold based on production from similar porphyry copper mines in Chile.

Metallurgical Test Work Summary

Two phases of test work have been undertaken on samples from the Llahuin Project, the first by ASMIN Industrial, in 2012 - 2013, at ASMIN Santiago and the second by SGS Minerals at SGS Santiago in 2020. Samples derived from selected diamond core composites taken from the Central Porphyry prospect. The program consisted of head assays, specific gravities, bond ball mill work index determinations, bond abrasion index determinations, rougher and cleaner flotation tests, locked cycle flotation tests, and thickening tests. The Company commissioned Sedgman Pty Ltd to undertake a review of the metallurgical test work conducted on the Llahuin Project in 2020.

From the Sedgman review the bond ball mill work indices ranged from 12.94 kWh/t to 16.4 kWh/t and averaged 13.89 kWh/t indicating moderate hardness, and a single bond abrasion index of 0.2287 indicate that the ore was moderately abrasive.

Locked cycle flotation test work was conducted on the samples using a primary grind size P80 of 140µm and a regrind size P80 of 45µm with two stages of cleaner flotation. These parameters had been determined through sighter test work. The copper recoveries in the locked cycle tests ranged from 73.9% to 89.8% and averaged 81.4%. Flotation concentrates produced during locked cycle testing contained the resource weighted average copper grade of 28% Cu and 4.9g/t Au. For molybdenum the recoveries were sufficient and lower, varying between 13.5% and 56.4%; the low values could be improved by performing an optimization study and adding some molybdenum-specific flotation reagents.

They also contained low levels of deleterious materials in the concentrate.

Given that these tests were designed to set parameters and were not optimised, the results indicated good flotation process characteristics.

Cut-off Grades and Reporting

Resources are reported above a copper equivalent (CuEq) cut-off grade of 0.22% CuEq. The CuEq calculation is based on metal prices of US3.50/lb Cu, US3.000/oz Au, and US20/lb Mo. No recoveries have been used as metallurgical test work is still to be optimised. Preliminary metallurgical recoveries from closed circuit flotation test work confirmed no deleterious elements: Cu 84–91%, Au 41–57%, Mo ~14–56%.

CuEq formula: Cu % + (Au g/t × 1.25) + (Mo % × 5.7).

Further test work and confirmation is required before final recoveries are finally applied.

Bulk Density

Bulk density values were determined using the Archimedes method on over 740 core samples, with values ranging from 2.65–2.84 t/m³ depending on lithology and oxidation state. A mean dry bulk density of 2.67 t/m³ was assigned to mineralised domains.

Mining and Metallurgical Factors

A preliminary pit shell was generated using the previously generated Resource Block Model used to report in June 2013. A new pit optimisation has not been applied at this stage on the new June 2025 Resource Block Model but an improved project 'Net Revenue' from an optimized pit is anticipated given the more favourable metals prices in force at this time. Historical test work confirms that mineralisation is amenable to conventional flotation, producing clean copper concentrates with minimal deleterious elements and payable gold and molybdenum credits. Further bulk test work, grind size optimisation, and gold recovery enhancement (potential gravity circuit) are planned.

Tenure, Environment, and Social Considerations

All concessions are held in good standing by Southern Hemisphere Mining Limited via its 100%-owned Chilean subsidiaries. A binding 30-year easement agreement is in place with the local El Espino community, securing land access for exploration and potential future mining and infrastructure. No known environmental or legal risks have been identified at this stage that would materially impact the Mineral Resource.

Mineral Tenement and Land Tenure Status

The Llahuin Project is located within the Coquimbo Region of central Chile, approximately 240km north of Santiago, and 17km south of the town of Combarbalá.

The Llahuin Project is located 56km east of the coast and the Pan-American Highway. The topographical coordinates of a central point within the project are East 71° 01' 29" and North 31° 20' 23" (Datum Long/Lat UTM Projection, International Reference Ellipsoid 1924, La Canoa Datum 1956, Time/Area 19).

The Llahuin Project is located within the "Amapola" concessions. These concessions have been granted to Minera Llahuin SCM (MNLLA), a wholly owned subsidiary of Southern Hemisphere Mining Limited.

Project	Tenement	Type of Tenement	% interest	Owner
Llahuin	AMAPOLA 1 1 AL 20	Exploitation	100	Minera Llahuin SCM
Llahuin	AMAPOLA 2 1 AL 20	Exploitation	100	Minera Llahuin SCM
Llahuin	AMAPOLA 3 1 AL 20	Exploitation	100	Minera Llahuin SCM
Llahuin	AMAPOLA 4 1 AL 20 RED 1/18	Exploitation	100	Minera Llahuin SCM
Llahuin	AMAPOLA 1 AL 300 RED 1/228	Exploitation	100	Minera Llahuin SCM
Llahuin	AMAPOLA II 1 AL 300 RED 1/256	Exploitation	100	Minera Llahuin SCM
Llahuin	AMAPOLA 5	Exploration	100	Minera Llahuin SCM
Llahuin	AMAPOLA 6, 1 al 4	Exploitation	100	Minera Llahuin SCM
Llahuin	AMAPOLA 7, 1 al 80	In process	100	Minera Llahuin SCM

Recently the Company executed a JV agreement with FMR Resources Ltd (ASX: FMR) for them to earn up to 60% in Amapola 1, 2, 5 and 7, which excludes all existing deposits and extensions thereof. The earn-in includes expenditure of up to \$13m over two stages, and payments of up to \$2.67m to the Company.

*Copper Equivalent (or "Cu Equiv" or "Cu Equivalent")

The copper equivalent calculations represent the total metal value for each metal, multiplied by the conversion factor, summed and expressed in equivalent copper percentage. These results are exploration results only and no allowance is made for recovery losses that may occur should mining eventually result. It is the Company's opinion that elements considered have a reasonable potential to be recovered as evidenced in similar multi-commodity natured mines.

Copper equivalent conversion factors and price assumptions for the June 2025 JORC (2012) Resource Update are stated below:

Copper Equivalent Formula= Cu % + Au (g/t) x 1.25 + Mo % x 5.71 Assumptions- Cu (US\$3.50/lb), Au (US\$3,000/oz), Mo (US\$20/lb)

Figure 14. Copper price chart for past 5 years, US\$7,714/t = US\$3.50/lb.

Llahuin Exploration Target

The Company has also recently completed an Exploration Target for the Llahuin Project, which was defined following the generation of the MRE described in this ASX release.

The tables below outline the Exploration Target for the Llahuin Project and are reported exclusive of the recent MRE. The Exploration Target with the widest range between Lower tonnes and Upper tonnes and grade ranges reflect the lower amount of drilling data available for these prospects.

Min	(Lower Rang	e)				
ZONE	CUT	VOLUME	TONNES	CUPC1	AU1	MOPC1
No	(Cu%)	Mm3	Mt	(Cu%)	(Au g/t)	(Mo%)
1	0.15	99.1	262.7	0.2	0.1	0.01

Max	(Upper Rang	(e)				
ZONE	CUT	VOLUME	TONNES	CUPC1	AU1	MOPC1
No	(Cu%)	Mm3	Mt	(Cu%)	(Au g/t)	(Mo%)
1	0.15	128.3	339.9	0.3	0.1	0.01

The Exploration Target is based on the current geological understanding of the copper mineralisation and endowment at Llahuin supported by >60,000m of RC and diamond drilling, recent MRE modelling, geological and structural mapping, surface IP geophysics, MT Geophysics, airborne geophysical data and interpretation and the comprehensive surface geochemical sampling sets available.

The Exploration Target does not consider factors related to detailed geological complexity, possible mining extraction methods or metallurgical processing or recoveries. This Exploration Target provides an assessment of the potential scale of the Llahuin Project mineralisation beyond the existing MRE and of the work programs needed to convert this Exploration Target into at least an Inferred MRE in the future.

The reported Llahuin Project Exploration Target is defined over three deposit and prospect areas. The majority is based on planned infill drilling between resources and extensions thereof as shown below, and the remainder is unclassified resources based on drill results albeit spacing too wide to classify as inferred.

Figure 15. Exploration target (Blue) and resource shells (Green). MT Targets (pink) (Looking ENE). Grid size 250m x 250m.

Geological Volume and Unclassified Mineralisation

A total of 109,000,000 cubic metres is contained within the interpreted blue wireframe shell, defined using drillhole data, geochemical assays, and geophysical interpretations.

Unclassified mineralised volumes (RCAT = 4) within the three main resource areas are as follows:

- 1. Central Porphyry: 907,000 cubic metres Unclassified
- 2. Cerro De Oro: 3,310,000 cubic metres Unclassified
- 3. Ferro Carril: 3,350,000 cubic metres Unclassified

The combined baseline volume is estimated at 116,600,000 cubic metres (rounded), with a lower range (-10%) (taking into account internal barren intrusives,) tonnage of ~260 million tonnes and an upper range (+20%) of ~340 million tonnes, assuming the same bulk density values used in the current MRE – (Approximately 2.67 tonnes / cubic metre). The Exploration Target has not extended below the depth of the majority of the existing drilling.

Grade ranges for copper, gold, and molybdenum are based on the current MRE and geological interpretations derived from drilling and analytical work completed to date.

The Exploration Target is to be evaluated through staged drilling programs, with the aim of generating JORC-compliant MREs—initially expected to meet the criteria for Inferred classification—within each prospect area or deposit identified. These programs are planned to be undertaken progressively over the coming years.

This Exploration Target is exclusive of the current MRE.

The Exploration Target has been prepared and reported in accordance with Clause 17 of the JORC (2012) Code and disclosed in compliance with ASX Listing Rule 5.7.2.

The potential quantity and grade of the Exploration Target is conceptual in nature. There has been insufficient exploration to estimate a Mineral Resource, and it is uncertain whether further exploration will result in the estimation of a Mineral Resource.

The Exploration Target is based on geological mapping and interpretations, drilling, geophysics, soil sampling geochemistry and Resource Model Interpretation. All relevant material assumptions used in the generation of this Exploration Target are outlined in the body of this announcement and in the accompanying JORC Table 1.

The Exploration Target is reported as a range of tonnes and grade in accordance with the requirements of ASX Listing Rule 5.7.2(a).

Cautionary Statement: The potential quantity and grade of the Exploration Target is conceptual in nature. There has been insufficient exploration to estimate a Mineral Resource in the area considered an Exploration Target (except where noted) and it is uncertain if further exploration will result in the estimation of additional Mineral Resources. The Exploration Target has been prepared and reported in accordance with the 2012 edition of the JORC Code.

Next Drilling

The next drilling program at Llahuin will be in Q4 2025 targeting the deep Curiosity-Southern Porphyry copper target with ~1,400m diamond holes in JV with FMR Resources Ltd. (ASX FMR).

Approved by the Board for release.

CONTACTS:

For further information on this update or the Company generally, please visit our website at <u>www.shmining.com.au</u> or contact the Company :

cosec@shmining.com.au Telephone: +61 8 6144 0590.

Media: Linked-in: @Southern Hemisphere Mining X: \$SUH.AX

Mineral Resources

Mineral Resources which are not mineral reserves have not demonstrated economic viability. The estimate of Mineral Resources may be materially affected by environmental, permitting, legal, title, taxation, socio-political, marketing, or other relevant issues.

Competent Person / Qualified Person Statements

Mr. Stephen Hyland

Information in this News Release relating to Mineral Resources and Exploration Target is based on information compiled by Mr. Stephen Hyland, a Competent Person and Fellow of the AusIMM. Mr. Stephen Hyland is Principal Consultant Geologist with Hyland Geological and Mining Consultants (HGMC), and is a Fellow of the Australian Institute of Mining and Metallurgy and holds relevant qualifications and experience relevant to the style of mineralization and type of deposit under consideration and to the activity which he is undertaking to be a qualified person for public reporting according to the JORC Code in Australia (JORC code 2012).

Mr Stephen Hyland is the Competent Person responsible for the June 2025 Mineral Resource Estimate for the Llahuin Project as reported in accordance with the JORC (2012) Code. Mr. Stephen Hyland consents to the inclusion in this report of the information in the form and context in which it appears. Mr. Stephen Hyland visited the Llahuin Project and the ALS Laboratory in Santiago in October 2024 and conducted independent resource determinations in compliance with JORC 2012.

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Historical riffle split RC samples were collected for each metre of RC drilling to obtain 1m samples from which approx. 4kg was split and sent to the ALS laboratory in Chile. The 4kg sample is crushed to -2mm from which a 1kg sample is split and pulverized to 85% passing -75µm and a 30g charge is taken for standard fire assay with AAS finish. Any multi-element assays are done using Multi-Element Ultra Trace method combining a four-acid digestion with ICP-MS instrumentation. A four-acid digest is performed on 0.25g of sample to quantitatively dissolve most geological materials. Elements and detection limits are presented below. Drillcore is cut in half with a diamond saw and the same side of the half core is sampled on a one or two metre intervals. Historical RC samples are collected at 1m intervals from RC-LLA-001 to RC-LLA-014 and then 2m intervals in RC holes numerically thereafter. Historical RC drilling samples were collected on a 2m basis and split to around 3kg using a single tier riffle splitter and sent to ALS Chile for sample preparation and analysis. Samples are dried at 70 degrees Celsius for up to 24hrs then the entire sample is crushed to -2mm and a 1kg sample is split and pulverized to 80% passing 150mesh. A 400 gram pulp is split off and a 30gram charge taken for Fire Assay and Cu and Mo with all assays by AAS. The AAS analytical procedures are ISO 9001:2008 certified and are in accordance with ISO/IEC 17025 Samples of the historical drillcore recently sampled were half HQ core samples on a one metre basis and were submitted to ALS in La Serena. Samples are dried at 70 degrees Celsius for up to 24hrs then the entire sample is crushed to -2mm and a 1kg sample is split and pulverized to 80% passing 150mesh. A 400 gram pulp is split off and a 30gram charge taken for Fire Assay and multi element assays using ICPMS and OES. RC samples of the historical drillcore recently sample dwere half HQ core samples on a one metre basis and were submitted to ALS in La Serena. S
		 2023 RC and diamond samples were collected as 2m samples and also subject to the same procedure sample preparation procedure described above. Assays were inductry standard four acid direct and Fire Assay with ICRMS finish for rold and ALS.

industry standard four acid digest and Fire Assay with ICPMS finish for gold and ALS multi-element method MEMS61 for 48 elements. Elements and detection limits are

Criteria	JORC Code explanation	Commentary
		 presented below. Some near surface drill samples were also assayed for acid soluble copper. 2024 RC drill samples were collected on a 2m intervals and collected into sample bags and split using a riffle splitter at the drilling rig. The bulk samples are weighed prior to splitting and RC recovery was deemed to be averaging about 95%. The HQ3 diamond core was split in half on site by company personnel after logging and sampled as two metre composites, The split samples are then bagged into sealed polyweave bags and transported by company personnel to Llapel where they are loaded onto an ALS contracted truck and driven directly to the ALS facility in Santiago. The samples are logged into the Labs system and then fine crushed to -2mm then a 250g split is pulverised to better than 85% passing -75µm. A 30g charge is taken for industry standard fire assay with ICPMS read. The multielement assay uses a four acid digest and the 48 elements are read by a combination of ICPMS and ICPOES. Recent rockchips were collected using a geological hammer from outcrops or old workings in the field. Additional rockchips for the Fathom study were collected on an approximate 200m by 200m spaced grid. The samples are photographed bagged and sent to ALS ta Serena Laboratory for analysis. The samples have an average weight of 4kg. The laboratory procedure is to log the sample is to their tracking system and dry them then they are crushed to -2mm from which a 1kg sample is split and pulverized to 85% passing -75µm and a 30gram charge is taken for industry standard fire assay with AAS finish. Any multi-element assay are done using Multi-Element Ultra Trace method combining a four-acid digestion with ICP-MS instrumentation. A four-acid digest is performed on 0.25g of sample to quantitatively dissolve most geological materials. Elements and detection limits are presented below. Fathom rockchips were collected on a nominal 200m spaced grid over most of the concession area. Where available drill pulp samples

Drilling techniques

Au-	Ag-	Cu-
AA23	AA62	AA62
Au	Ag	Cu

REPORTABLE ELEMENTS AND RANGES

		Method Au-A/	Code A23		Analyte Au		Unit ppm]	Low	ver Limit 0.00	ر 5	Jpper Limit	10.0
	ME-	-MS61 A	nalytes and	d Reportir	ng Ranges								
			Ĺ	.ower	Upper			Lower	Upper			Lower	Upper
	Ana	alyte l	Units L	Limit	Limit	Analyte	Units	Limit	Limit	Analyte	Units	Limit	Limit
	A	Ag Do	ppm	10	10000	AI	%	0.01	1000	AS	ppm	0.2	10000
	E C	Ca	w %	0.01	50	Cd	ppm	0.05	1000	DI	ppin	0.01	500
		Co	ppm	0.1	10000	Cr	ppm	1	10000	Cs	ppm	0.01	500
	C	Cu	ppm	0.2	10000	Fe	%	0.01	50	Ga	ppm	0.05	10000
	G	Ge	ppm	0.05	500	Hf	ppm	0.1	500	In	ppm	0.005	500
	H	K	%	0.01	10	La	ppm	0.5	10000	Li	ppm	0.2	10000
	N	Мg	%	0.01	50	Mn	ppm	5	100000	Мо	ppm	0.05	10000
	Ν	Na	%	0.01	10	Nb	ррт	0.1	500	Ni	ppm	0.2	10000
	Р	מ	pm	10 100	000 Pt	nag (ı 0,5	10000	Rb	ppm	0.1	10000	
	Re	e pr	pm 0.00	02	50 S	9	6 0.01	10	Sb	ppm	0.05	10000	
	Sc	c pr	pm 0).1 10(000 Se	e pon	n 1	1000	Sn	ppm	0.2	500	
	Sr	r pr	pm 0) 2 100	000 Ta		n 0.05	500	Te	ppm	0.05	500	
	Th	h pr	pm 0.0	01 100)00 Ti	991	6 0.005	10	TI	ppm	0.02	10000	
	U		pm 0),1 100	000 V	ppn	1 1	10000	W	ppm	0.1	10000	
	Y	n pr	pm 0).]	500 Zr	ומק ו	1 2	10000	Zr	ppm	0.5	500	
	 ALS Pulp is m ten serie com 	Multi o com neasur metre es Van nposit	ieleme posite red by e inter nta pXI ce is the	ent par s were electr val. Th RF. In en ser	ckage I e collectoric so ne pulp tervals nt for fo	MEMS6 cted fro cale and compo were t our acio	1for 20 om the d put in osite is hen sel d diges	D21 and Llahuin Ito a ne then n lected t ICPM	d 2022 n pulp ew pap nixed a for ass S assay	and 20 library v per pulp and reac ay and a y at ALS	23 drill where bag fo I by an a samp in San	ling. exactly or the re Olymp ole of th tiago.	10grams equired us M ie pulp
ry air triple or ier type,	 Rece face 2023 EDN (sim 	ent 20 e samp 3 RC a /1 200 nilar to	024 RC pling h and dia 0 RC u o a Lon	drillin ammo amono tilizinn ngyear	ng was er with d drillir g a face r 44).	comple a 5.25i ng was e e sampl	eted us nch dia comple ing har	ing a S ameter eted by mmer a	Schram r bit by v DV Dr and a F	m 685 F R Muño illing fro Fordia 14	RC drill oz drill om La S 400 dia	ing rig u ing. Serena amond	using a using an rig

Criteria	JORC Code explanation	Commentary
		 Historical Drilling across the Llahuin Project area has been completed by three different drilling companies. They include HSB Sondajes, Geosupply and R Muñoz Ltd for both RC drilling and diamond drilling. Historical diamond drilling was HQ or NQ (for deeper holes where it was required to reduce) core size and was not orientated. Recent diamond drilling was completed by RMunoz using a Sandvik 710 model diamond drilling rig drilling HQ3 triple tube technique and the core was orientated using a Reflex electronic core orientation tool. Orientations were checked using the traditional spear and crayon method and found to match very well.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 The 2024 drilling program was drilled by RMonoz using a Schramm 685 RC drilling rig equipped with a 350psi/1250cfm compressor and a SULLAIR – 900XHH/1150XH auxiliary compressor. Samples were collected on a 2m basis into bags and weighed to allow approx. recovery to be calculated. All recent RC Samples were weighed and weights recorded to ensure recovery is acceptable. RC driller lifts off between each metre to ensure sample separation between each metre. There doesn't appear to be a relationship between sample recovery and grade as sample recovery is excellent. A booster and auxiliary compressor were utilized to keep all RC samples dry. The 2023 RC drilling utilized a single compressor and as such when the hole went wet the RC was stopped and the hole was extended with a HQ3 size diamond tail where necessary. Historical RC drilling encountered water table ie wet samples between 20 to 100m depth. The water table is generally encountered between 20m and 100m from surface. Where the water table is encountered, a rotary splitter is used to assist with RC sample quality. Approximately sixty percent (60%) of the historical RC samples are reported to be wet. This issue has been partially remediated by using diamond drilling in preference to RC drilling for all further historical resource definition drilling. AMS concluded no significant bias in using the wet RC drill holes. Historical RC and DC drilling and data collection methods applied by SHM have been reviewed by AMS during successive site visits for the historical drilling. All recent diamond drilling showed assays to be less than expected for gold at Colina2 and the sludge from the core saw was sampled and sent to ALS La Serena for gold analysis. Samples of the drilling sludge were also collected in 3m downhole intervals to check the amount of gold in the outside return. Both types of samples were assayed for gold returned values of 0.512 g/t gold from the core saw sludge sample and from 0.05 to 1.87 g/t gold in the drilling s
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate	 Diamond core, PD and RC drill chips were logged on site with details recorded throughout the entire hole. Recorded Information Included lithology, degree of
	 Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or 	 oxidation and alteration, sulfides and veining. Diamond core was geotechnically logged for recovery. Diamond core was stored on site with key holes systematically re-logged and re-sampled (before 2011). A small

Criteria	JORC Code explanation	Commentary		
	 costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 representative sample of RC chips was collected for each interval sampled, and these have been retained for future reference. Core was photographed and the photographs catalogued. Magnetic susceptibility was also logged with selected samples submitted for petrography. 		
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 RC samples were collected into a green plastic bag which is then riffle split into a numbered calico bag for each metre of drilling. The majority of the RC samples were dry as holes were stopped if the RC drilling went wet. If significant groundwater was encountered an auxiliary compressor and booster were utilized to keep the sample dry. Field duplicates were not collected but can be split later to confirm results. Historical DC samples are taken on 2m intervals. In some places, this sample interval overlaps lithological contacts, although contacts are hard to determine in places due to pervasive alteration. Historical drill core has not been orientated for structural measurements. The core is cut lengthways with a diamond saw and half-core is sent for assay. The half-core is bagged every 2m and sent for preparation, while the remaining half-core is returned to the labelled cardboard core box. A cardboard lid is placed on the box, and it is stored in a newly constructed weatherproof storage facility (warehouse) for future reference. There is no relationship between the sample size and the grain size of the material being sampled at Llahuin. Recent HQ3 diamond drilling at Colina was initially cut with an industry standard core saw until it was realized that gold was being lost in the core saw and a core splitter was used after hole 22CLDD025. Sample size is considered important with nuggety gold and thus one hole (22CLDD026) had whole core submitted to see if the gold grades improved. No apparent difference was seen in the gold grade. Compared to the RC drilling where much higher grades were intersected it is thought the much larger sample size of the RC (30kg/metre vs 3kg for the core) is a more representative sample. 		
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 2024 assays were a fire assay for gold with ICPMS read and four acid digest for multielement including copper with an ICPMS read. Appropriate standards and blanks at a rate of 1:20 were inserted into the assay stream. The assay technique utilized is "industry Standard" fire assay with AAS finish for gold which is a total digestion technique. For the recent RC drilling appropriate industry standard CRM' s and blanks were inserted into the sample stream at a rate of approximately 1:20 samples for both standards and blanks. This is considered above industry standard for the recent drilling and there is no apparent bias of any significance at Llahuin. Historical drilling - Blanks and field duplicates are inserted at irregular intervals, at a range of between 1:20 and 1:40. A total of 1,738 laboratory standards have been analysed in a large variety of Cu and Au grade ranges, and there is no apparent bias of any significance (AMS June 2013) A total of 462 blanks have been inserted into the sample stream (RC and DDH). Recent diamond core samples had CRM's and blanks inserted at a rate of approximately 1:20. Additionally coarse crush duplicates of the DDH samples were split by ALS and assayed to give duplicate data at 1:20. Duplicate data shows a very 		

Criteria	JORC Code explanation	Commentary
		good comparison. A total of 77 Umpire assays were completed at 1:40 for recent RC and diamond core sample by Andes Analytical Assay in Santiago and showed correlation coefficients for the paired data for all elements was above 0.9.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 The company's exploration manager (QP) has made several site visits and inspected the sampling methods and finds them up to industry standard for all the recent drilling. Ian Dreyer completed a site visit in October 2023 and reviewed the new drilling and some of the better historical intersections. Prior to March 2012, DDH was performed predominantly as tails at the termination of some of the RC holes. DDH performed from April 2012 has been from the surface with a total of 4 diamond drill holes twinned to pre-existing RC drill holes. Twin hole drilling was completed across the Central Porphyry and Cerro De Oro zones. AMS concluded that there is insufficient data to make a definitive comparison, and that the twins are sufficiently far enough apart to explain some of the grade differences. No new drilling has been twinned yet. Logging is completed into standardized excel spreadsheets which can then be loaded into an access front end customized database. There have been no adjustments to the assay data. Historical sampling and assaying techniques were independently verified by Mr. Bradley Ackroyd of Andes Mining Services who undertook a site visit to the Llahuin Copper-Gold Project between 5th and 8th of May 2013. He inspected the drill sites, drill core and chips, logging, sample collection and storage procedures as well as the office set-up and core processing facilities. Mr. Ackroyd also observed all the available surface exposures of the deposit across the Llahuin project area. In addition, Mr. Ackroyd undertook a short review of the quality control and assurance procedures employed at the project site. In October 2024 Steve Hyland of HGMC made a five day site visit reviewing drilling and sampling procedures and overall site geology. No adjustments have been made to the assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 A licensed surveyor was employed to pick up the new drillhole locations. The survey was performed by Mr. Luciano Alfaro Sanders using a total station instrument. The collars picked up to within 0.1m accuracy. This accuracy was not able to be checked, however the relative positions of the drill holes has been confirmed during the site visits. A UTM projection is used with International Reference Ellipsoid is 1924, La Canoa datum 1956, Time/Area 19. The survey is generally accurate to within 0.1m through use of a base / total station survey Instruments. The recent (2021-2023) drilling collar surveys were done by Misure a company from La Serena using an RTK total station. Downhole surveys were done by Misure using a downhole gyroscope. Rockchips and soil samples are located with a Garmin handheld GPS unit accurate to 3m which is considered good enough for the type of exploration work being done.

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The recent drillhole spacing is approx. 20 to 40m spaced holes in various locations. Drilling was completed within an existing resource and scout type drilling was completed in previously undrilled areas at Llahuin. Historical drilling was completed at The Central Porphyry, Cerro de Oro and Ferrocarril zones have been drilled on a nominal spacing of 50m by 50m in the upper portions and 100m x 100m in the lower portions of the deposits. No sample compositing has been applied in the recent drilling and 2m composites were taken in the majority of the historical drilling. Rockchips typically don't have a set sample spacing as they are taken from outcrops. Some continuous chip samples were taken along road cuttings. The soil sampling grid used an initial 200m by 50m grid with final infill typically 50m by 25m.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The drilling was predominantly designed where possible to be perpendicular to the interpreted strike of the mineralisation to help reduce sampling bias. In The Central Porphyry area, drilling sections are orientated in North-Westerly and to North-Easterly directions with respect to grid north to adequately intersect roughly cylindrical shaped porphyry intrusive rock mass structure. The North-Westerly oriented drilling Central Porphyry is also perpendicular to the interpreted overall project scale North North Easterly sulphide mineralisation trend. The majority of the drilling at Central Porphyry are dipping at -60° thereby adequately testing the close to vertically oriented porphyry mineralized zones and contact interface with host rock. At Cerro De Oro the Scorpion, drill sections are also orientated in North-Westerly and to North-Easterly directions. Again the majority of the drilling is drilled as -60° dip holes aimed at testing an Interpreted set of closely spaced, steeply dipping structural and brecciated mineralization zones. The drilling at Ferro Carril is mostly on an East-West orientation again at mostly -60° dip to intersect a locally concentrated set of interpreted and steeply dipping North-South and North-East oriented structurally controlled mineralization zones. Considering the relatively large number of drill-holes present in conjunction with the varying drill orientations used it is not likely that significant sampling bias may have been introduced regarding the determination of both sizes and orientation of main structures.
Sample security	• The measures taken to ensure sample security.	 Samples were collected by a qualified consulting geologist and the samples were delivered to the lab by a company employee. Competent Person Reg No 0336. Recent samples from 2021-2023 are taken to ALS La Serena by a company representative in a company supplied vehicle. 2024 samples wre bagged Into sealed large plastic bags and taken to llapel by a company representation and loaded onto a truck contracted by ALS Santiago.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 Andes Mining Services completed an external audit and review in 2013 of the historical drilling and sampling procedures. Ian Dreyer reviewed the current sampling procedures and concluded they were acceptable to industry standard. The currently associated QP Mr Stephen Hyland

Criteria	JORC Code explanation	Commentary		
		has reviewed the current QAQC data and found the data to be acceptable and fit for purpose.		

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Llahuin Project is 100% owned by SUH. The security of tenure is considered excellent as the licence is 100% owned by SUH. There are no known impediments to obtaining a licence to operate in the area.
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 Previous drilling on the licence by SUH has been done to industry standard as per AMS report (SUH press release 19th August 2013).
Geology	• Deposit type, geological setting and style of mineralisation.	• Exploration is targeting porphyry Cu-Au Porphyry style mineralization hosted in Cretaceous intrusives (diorite) at Llahuin and potential IOCG type gold copper and gold mineralisation at Colina2.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	• See Appendix 1.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such 	 Exploration results and aggregates have not been used are not required or presented for this report. Compositing for resource estimation used length weighting to regular 2m downhole intervals CuEq (%) (copper equivalent grade) used for this resource estimate is derived from the assumptions for metals prices, preliminarily tested recovery and calculation formula:

Criteria	JORC Code explanation	Commentary			
	aggregations should be shown in detail. • The assumptions used for any reporting of metal equivalent values should be clearly stated.	 Metal Prices Assumptions : Copper (Cu) = US\$ 3.50/lb, Molybdenum (Mo) = US\$20.00/lb, Gold (Au) = US\$3000/troy oz. No definitive recovery factors applied presently as part of interim assessment pending final definitive metallurgical test work. Copper Equivalent level calculation Is compensated with conservative metals prices. Copper Equivalent Block Calculation (excl recoveries) is CuEq% = (Cu%) + (Au g/t x 1.2497) + (Mo% x 5.71429). Observed Gold (Au) and Molybdenum (Mo) concentrations are generally low but are extensively distributed. 			
		 Some standard metallurgical flotation test work carried out by ASMIN Industrial (Santiago, Chile) on a small set of test samples showed a maximum Copper recovery (Max R) of ~97.8% and an average recovery of ≈ 91.7% based on 12 tests. Very preliminary metallurgical test work in conjunction with Copper recovery test show that without optimization at present Gold recoveries of at least 50-55% is achievable and for Molybdenum more than 45-50%. It is expected that further testwork will yield significantly improved recoveries for Gold and Molybdenum. 			
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Exploration drilling was targeting near surface material in a porphyry Cu-Au system. Therefore the mineralised widths are much greater than the drillhole depths for the Central Porphyry. Drilling at Cerro De Oro is partly infilling historical drilling so therefore downhole widths have been reported and true widths are not established yet as the historical drilling appears to be too widely spaced. Drilling in all areas has been conducted perpendicular to the regional trend observed in outcrop. Exploration at Colina2 was targeting potential IOCG type gold and recent drilling was orientated perpendicular to the regional trend observed in outcrop. 			
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Appropriate maps and diagrams have been included in the release and are presented in body of text. 			
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 A range of grades were included in this and previous releases. 			
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 A drone magnetics survey was completed over the project area in 2021 by GFDas UAV Geosciences Santiago Chile. Survey specifications provided below. Company: GFDAS Drones and Mining Line direction: 90°-270° Line separation: 25m Tie line Direction: 0-360 Tie lines separation: 250m Flight Height: around 25m AGL following topography (according to operational safety conditions) Registration Platform Mag: DJI M300 Drone 			

Criteria	JORC Code explanation	Commentary	
			Registration Platform Topo/ortho: DJI Phantom RTK Pro Drone Geoidal Model: EGM08 Flight speed: 5-10m/s Mobile sampling: Fluxgate magnetometer, 25 Hz Resolution: Digital Elevation Model 1 m and Resolution: Orthophoto with 20 cm/pixel Base sampling: Geometrics magnetometer sampling 30s. Positioning: Phantom 4 RTK
		Survey Mod	ule:
			The flight module uses a VTOL drone, powered by rechargeable electric batteries and a positioning system with three GPS antennas. The registration module was miniaturized, simplified and made of low weight components suitable for lifting by the drone. These correspond to the magnetometer, acquirer and analogue-digital converter.
		Magnetic Su	rvey: The data was corrected for Diurnal variances, micro levelled with the
			use of the tie lines by GFDAS Drones and Mining. They also applied the Reduction to the Pole process on the data (inclination -32.3° and 0.4° declination) that was supplied to our company.
		• Topographic	flight plan: Due to the strong differences in the elevations of the terrain, it was flown from different points within the north-south polygons with differentiated flight height, to achieve a pixel resolution as requested. These flight heights had a range between 350 m and 460 m (AGL flight height). The overlaps of flight lines were between 75% and 80%, this was done depending on the flight height and detail required.
		 Fathom Gec on recently eleven eler (molybdenu W (tungsten Halley et al. wireframe s given point i MT survey p 	physics applies its proprietary 3D porphyry footprint modelling method collected rock chip and drillhole pulp data at Llahuin. This method uses nents (As (arsenic), Bi (bismuth), Cu (copper), Li (lithium), Mo m), Sb (antimony), Se (selenium), Sn (tin), Te (tellurium), TI (thallium), and), to map idealised deposit model zonation and thresholds based on the , (2015) geochemical model. Deliverables from this work are a set of nells representing probabilities of the presence of a porphyry system at a n 3D space.
		• CHJ # 2424 -	- Llahuin Audio-frequency Magneto-Telluric Survey
		 Survey mod (AMT) 	e: Modified scalar and sparse tensor Audio-frequency Magneto-Tellurics
		 Survey confi with a total 	guration: Twenty-three 200m-spaced survey lines, oriented at 116.2°, of 34.7 line-km. Acquired with contiguous 100m E _x -field dipoles and

Criteria	JORC Code explanation	Commentary
		 sparse E_y-field dipoles nominally every 500m, and sparse H_x/H_y-field high band induction coils. Total of 347 Zxy Zxx sites of which 73 also included Zyx Zyy impedance data. Mutual magnetic field remote referencing. Data acquisition: Full time series data acquisition, predominantly during daytime, with sampling rates of 32768Hz and 2048Hz, with some data also at sampling rates of 512 and 128Hz. Time series records of up to 2²² samples for each, repeated several times in the acquisition schedule. Timing provided by internal GPS-PPS. Impedance data was generally obtained between about 0.5 and 8000Hz. Acquisition system: Advanced Geophysical Technologies' gDAS32 data acquisition system with Zonge ANT-6 and Geometrics G20k or G100k induction coils. Instrument calibrations and system checks carried out according to manufacturer's recommendations.
		 Data processing: Advanced Geophysical Technologies' gDASPro v.2.4 used for data management and processing. Processing based on the use of Fast Fourier Transforms with spectral averaging and stacking of cross- and auto-power spectra to enhance the estimations of impedance. Automated rejection of impedance estimates with lower coherency coefficients and data quality weightings is used prior to robust averaging. Data from the overlapping bands is re-sampled to a consistent set of frequencies using a high-order spline. Results are saved to the SQLite database. Following final data review and editing, industry standard EDI format (SEG) files are generated.
		 Data quality: Zxy component (electric field along survey line) data had a median coherency of 0.96, with estimated errors in apparent resistivity of 0.8% and impedance phase of 0.11°.
		 Data modelling: 1D and 2D inversion models of the MT data are generated with Viridien's Geotools™ v.4.0.4 software. 3D inversion modelling is carried out though Geotools with RLM3D. The inversion model results are imported to Geosoft Oasis Montaj for presentation as sections, plan maps or 3D visualizations. Modelling incorporated Magneto-Telluric data from a previous survey carried out in 2012. A bulk density sampling program for historical and new drillcore was completed for every 20m downhole. The BD measurements for this program were completed by ALS in La Serena method OA-GRA08a. A total of 511 new samples were measured and combined with the historical 232 samples (743 total) with an average BD of 2.67. Summary of Historical Metallurgical testwork results.

Commentary

Metallurgical Testwork - Llahuin Copper-Gold Project -

Closed Loop Flotation Testwork (Diamond Drill Core Samples)

Sample	% of	Feed Grade ↔ % Cu	Feed ↩ Grade g/t ↩ Au	Cu	Au	Concentrate Grade % Cu	Concentrate Grade g/t ∉ Au
UGM-01	37	0.46	0.142	85	47	32	6.1 +
UGM-02	11	0.44	0.150	91	57	31	8.8 ↔
UGM-03/06	11	0.28	0.067	75	52	16	2.6 +/
UGM-04	13	0.33	0.046	81	41	28	2.3 +
UGM-09	16	0.33	0.066	88	41	26	3.4 ↔
TOTAL/WT AV.	88	0.39	0.106	84	47	28	4.9 ~

Exploration Target (JORC Code Clause 17 Disclosure)

- In addition to the current Mineral Resource Estimate (MRE) of 218 Mt @ 0.38% CuEq (0.22% CuEq cut-off), the Company has delineated an Exploration Target ranging between 260 and 340 million tonnes, with grades estimated between 0.20% to 0.30% copper (Cu), 0.08 to 0.10 g/t gold (Au), and 50 to 60 ppm molybdenum (Mo). This Exploration Target is exclusive of the current MRE.
- Cautionary Statement: The potential quantity and grade of the Exploration Target is conceptual in nature. There has been insufficient exploration to estimate a Mineral Resource, and it is uncertain whether further exploration will result in the estimation of a Mineral Resource. The Exploration Target has been prepared and reported in accordance with Clause 17 of the JORC Code, 2012 Edition.
- The Exploration Target is based on the current geological understanding of copper mineralisation at the Llahuin Copper-Gold Project, supported by over 60,000 metres of RC and diamond drilling, recent Mineral Resource modelling, geological and structural mapping, surface IP and MT geophysics, airborne geophysical data, and comprehensive geochemical sampling. The majority of the target is defined by extensions of known mineralisation at Central Porphyry, Cerro De Oro, and Ferro Carril, and includes both infill zones between classified resources and unclassified mineralised volumes.
- A total of 109 million cubic metres is contained within the interpreted 3D wireframe shell based on geological and geophysical interpretation. Additional unclassified mineralised volumes (RCAT = 4) are:
 - + Central Porphyry: 907,000 m³
 - + Cerro De Oro: 3,310,000 m³
 - + Ferro Carril: 3,350,000 m³
- This gives a combined base volume of approximately 116.6 million cubic metres. Applying a bulk density of ~2.65 t/m³ (consistent with the MRE), the tonnage range is estimated at 260 Mt (-10%) to 340 Mt (+20%). Grade ranges are inferred from the current MRE and supported by geological interpretation. The Exploration Target does not extend below the depth of the majority of existing drill coverage.

Criteria	JORC Code explanation	Commentary
		 The Exploration Target will be evaluated through staged drilling programs, with the aim of generating JORC-compliant Mineral Resource Estimates, initially expected to meet the criteria for Inferred classification. These programs are planned to be undertaken progressively over the coming years.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Follow up diamond drilling of extensions to known mineralisation is planned for Llahuin in 2025. Additional modeling of the MT data and other Fathom specific models for the 3D magnetic Inversion data. A potential ground based gravity survey Is also being evaluated. Additional rockchip sampling is continuing following up copper gold molybdenum soil anomalies. Detailed 1:1000 scale geological mapping is ongoing over the 12km 2 tenure.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Southern Hemisphere Mining Limited (SHML) data has compiled and stored all Survey, Drilling, Geological Logging and Assaying data in an SQL format database which Is exported as DBF, Excel spreadsheets or other tabulated formats for review or use in geological and mineralization interpretation and Resource Modelling. Several Data validation approaches have been used by HGMC including cross validation of the database tables and checks for downhole interval integrity and a thorough completement of coordinate and grade ranges checks. Some manual checking of the historic data against records has not been undertaken on selected representative drill holes.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 HGMC carried out a site visit to the Llahuin Project location in early October 2024 (Oct 2nd - Oct 5th). The site visit included a comprehensive review of local deposit geology, and the entire deposit area was traversed by foot. Also reviewed was the ongoing exploration and mine development strategy. Considerable time was dedicated to a detailed review of diamond core samples from several exploration holes selected from each main deposit area. Lengthy discussions were also had with the onsite Geological and Engineering personnel to help gain a better understanding to the deposit geometry and scale. HGMC also observed RC drilling In progress which had commenced at the time of the site visit and was part of the overall 2024 drilling campaign. A range of drilling, sampling, logging and preliminary Niton™ XRF metal (Cu) analysis of samples from the select few holes in progress was observed and noted. HGMC can confirm all drilling sampling and related data acquisition processes were performed and supervised with appropriate diligence. All observed work easily describable as being of industry best practice standards.

Criteria	JORC Code explanation	Commentary
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 Following recent additional drilling Southern Hemisphere Mining In 2024, particularly in the Cerro De Oro and Ferro Carril areas, the level of confidence with respect to the geological and structural understanding as well as the spatial distribution of the disseminated sulphide mineralization has Incrementally improved. This improvement has In turn added to resource estimation confidence. Most zones are easily traceable across numerous drill holes and drill sections. HGMC has updated the geological and mineralization interpretation particularly in the Cerro De Oro and Ferro Carril areas. The recent drilling further confirms and refines the historic interpretation work carried out by previous project operators, Antofagasta Minerals S.A. (AMSA) and Cominco Resources Ltd. The infill drilling has helped better define the local spatial distribution of Cu, Mo and Au mineralization and helped map the local variability of these elements. The additional assay information confirms the previous interpretation of mineralized zones and the understood structural geological framework and added significantly more detail as a consequence of the higher density drilling. HGMC has carried out a detailed review of surface mapping of outcrop, drill hole intercept logging and assay results. The structural interpretations have also been revisited and HGMC confirms the basis for the current geological interpretation. Surface expression of the disseminated sulphide is observable but not strong. The extents and geometry mineralization geometry understanding though there are still some limitations of the current drill coverage with respect to mineralization boundaries and depth extents. Further drilling work is still required to better define the geometry and extents of the mineralized sulphide zones. Future work including additional drilling is unlikely to have any significant downside changes to the interpretation definition wireframes of using a
Dimensions	• The extent and variability of the Mineral Resource expressed as length	• There Three broad sets of wireframe envelopes (domains) representing the Llahuin mineralization occurrences. From North to South they are the Central Porphyry

Criteria	JORC Code explanation	Commentary
	(along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	 Area, the Cerro De Oro Area and the Ferro Carril Area with Is sub-divided Into 'Ferro North' and 'Ferro South'. Central Porphyry and Cerro De Oro are separated by a gap of approximately 200m. Cerro De Oro Is separated from Ferro Carril by a gap of approximately 650m. The gaps though having some drilling are Interpreted to be generally weakly mineralized. The Central Porphyry Is a roughly cylindrical In form Intrusive plug like structure that outcrops at surface and is approximately 475m (E-W) by 500m (N-S) and interpreted to extend from surface down to 980m RL (~630m). The Cerro De Oro is an irregularly shaped mineralization structure that also outcrops at surface and is approximately 400m (E-W) by 850m (N-S) and interpreted to extend from surface down to 710m RL (~430m). Ferro Carril is also an irregularly shaped set of mineralization structure that also outcrop at surface. Ferro North is approximately 450m (E-W) by 650m (N-S) and interpreted to extend from surface down to 1070m RL (~380m). Ferro South is approximately 240m (E-W) by 280m (N-S) and interpreted to extend from surface down to 1070m RL (~300m).
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	 The initial wire-frame mineralisation area domains were interpreted based on a nominal 0.1-0.2% Cu delineation cut-off and adjusted according to localized variations in Mo and Au distribution changes. The spatial distribution of mineralization within all deposit areas is relatively predictable with low coefficients of variation observed particularly for the Copper the composite population (CV=~0.48). The coefficient of variation for Molybdenum composites is also at a relatively low level (CV= ~1.25) for all areas. For Gold composites the observed coefficients of variation tend to be slightly higher (CV=~2.4) within the 3 main mineralization areas. The relatively low coefficient of variation values observed allowed consideration of a small distance restriction to be applied to outlier composite grades during block model interpolation. The outlier grade / distance restriction was used for all Cu, Mo and Au analytical Items to mitigate excessive extrapolation of high grade composite values particularly in zones of low drilling density. The outlier grade threshold used for the distance restriction applied at approximately the 98th percentile level. The Distances of restriction applied were derived from observations of downhole variography and used an approximate two time multiple of variogram range for the distance restriction. Semi-Variograms were modelled using the normal spherical model for each of the main area domains. Typical 'Down-Hole' ranges modelled were In the order of 12m to 20m for Cu, 8m to 10m for Mo and 9m to 13m for Au. A set of 'Between Hole' Semi-Variograms for each area domain with observed ranges of ~55m for Central Porphyry, ~72m for Cerro De Oro and ~42m for Ferro Carril. One large 3D block model covering the 3 main mineralization domains was generated using uniform block sizes with an associated Block Percentage value (~1%)

Criteria	JORC Code explanation	Commentary
		 precision) to account to contained wire-frame volumes. The Block Size (SMU) selected Is 10m x 10m x 5m size and represents a compromise to accommodate mineralisation zone size and complexity and also drilling / sampling density.
		 The Block Model coordinate boundaries at Llahuin (UTM - La Canoa datum 1956, Area 19 projection) are;
		306,500 m E to 308,300 m E - (190 x 10.0 m blocks) 6,528,000 m N to 6,532,600 m N - (460 x 10.0 m blocks) 680 m RL to 1780 m RL - (220 x 5.0 m benches)
		 Interpolation was carried out separately for analytical items for Cu(%), Mo(%) and Ag(g/t) and utilized 2m down-hole drill composites. Block grades were estimated using Ordinary Kriging using a single pass searches
		approach and a primary oriented anisotropic search ellipsoid of 100 x 60 x 60m with a secondary search ellipsoid of 75 x 30 x 30m.
		 Interpolation used a maximum of 24 composites and a maximum of 3 composite per drill hole.
		 HGMC confirms that Copper and Gold tend to be moderately correlated and in places display different zonation. Copper and Molybdenum are observed to be weakly correlated and it is notable that Molybdenum has a clear local zonation particularly at Central Porphyry where It is clearly quite different to the Copper spatial distribution.
		 Some anomalous and minor Siver (Ag) Is present throughout each deposit area and at such low concentrations that It Is not likely to hold any economic importance at this stage of project development. Copper (Cu), Molybdenum (Mo) and Gold (Au) are present In sufficient concentrations to be considered viable for economic extraction through flotation methods, assuming that Mo and Au will be recovered within the Cu concentrates.
		• The most recent previous resource estimate (June 2013) carried out by Southern Hemisphere Mining used a nominal 0.28% % CuEq reporting lower cut-off which was considered a level that is appropriate for that particular 'instance' in time and is dependent upon any given set of metals prices (and mineral recoveries) at that time. The new June 2025 resource estimate has used similar modelling approaches but using a significantly updated drilling database and thus a much more refined mineralisation interpretation regime. Due to these differences a direct comparison of the June 2013 estimate and the new June 2025 estimates has some limitations. Previously the total combined resource estimate using a 0.28% CuEq lower-cut-off reporting basis used by Southern Hemisphere Mining was :
		Meas+ Ind = 148.91 Mt @ 0.288% Cu, 0.007% Mo, 0.125g Au/t and 0.408% CuEq Inferred = 19.93 Mt @ 0.199% Cu, 0.005% Mo, 0.186g Au/t and 0.362% CuEq
		The new HGMC estimate using a similar 0.22% CuEq lower cut-off reporting basis is :
		Meas+ Ind = 174.05 Mt @ 0.238% Cu, 0.006% Mo, 0.10g Au/t and 0.393% CuEq

Criteria	JORC Code explanation	Commentary
		Inferred = 43.99 Mt @ 0.185% Cu, 0.005% Mo, 0.07g Au/t and 0.311% CuEq
		 This is an approximate "17% increase in reported tormage for Meas+ind using the newer slightly lower reporting cut-off with overall slightly lower overall grades reported for Cu, Mo, Au and CuEq being observed. Some of the tonnage increase is related to increased mineralisation volume changes following the addition of new drilling particularly in the Cerro De Oro and Ferro Carrill areas. Some of the tonnage increase is attributed locally to the use of a slightly more reliable assignment of bulk density values to the block model using a 'nearest neighbor' assignment from the comprehensive set of bulk density measurements measured from a large number of drill-holes. Overall there is only a small variation in observed bulk density ranges across the 3 main deposit areas. Significant mining has not been carried out within the Llahuin Project deposit areas to date. Some small scale artisanal mining from selected areas within each deposit has taken place with the majority of material extracted for copper and gold recovery within the near surface proximity of the Central Porphyry deposit area. A limited number of assumptions have been made with respect to the recovery of by-products or individual metal species Independently based on the limited ASMIN Industrial (Santiago, Chile) metallurgical test-work. Initial recoveries appear good to excellent and it is expected that future refinement of these will follow in future planned metallurgical testing programs. No acid mine drainage or deleterious element studies have yet been commissioned but initial observations suggest significant concentrations of deleterious element are not expected to be present. The Llahuin Project block model encompassing the 3 main deposit areas was validated by several methods, including visual validations on-screen, global statistical comparisons trend analysis and SWATH plots
Moisture	• Whether the tonnages are estimated on a dry basis or with natural	The tonnages are estimated on a dry basis.
	moisture, and the method of determination of the moisture content.	 There is as yet no direct in-situ measurement data used to assign a likely in-situ moisture content to any future mining production tonnages. Considering the hardness and observed relative competency of the material observable in core from bond-work index perspective, it is expected moisture contents of mined material will be quite low.
Cut-off parameters	• The basis of the adopted cut-off grade(s) or quality parameters applied.	 The classified Mineral Resource is reported beneath the current surface DTM topography consisting of fresh rock outcrop and some minor tertiary cap fill surfaces. All reporting of Resources Is aligned using a Copper Equivalent (CuEq%) and Copper (Cu%) lower cut-off basis suitable for any future ore definition and related open pit mine planning and mineral processing. The use of a Copper Equivalent reasonably reflects the likely economic metal values and which would support the likely operating costs expected for processing from a flotation plant to produce copper and Molybdenum concentrate products with contained beneficial Gold and Silver. A 0.2% Copper Only (Cu%) reporting basis summary is also presented for transparency and for historical comparison purposes and to assess the effect of a straight total metal content value perspective.

Criteria	JORC Code explanation	Commentary
Mining factors or assumptions	• Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	 Llahuin Project has been estimated and reported as principally an open pit target however it may also provide a more selective underground target for deeper and higher grade mineralization in localized zones. No mining dilution ore loss factors have applied to the Mineral Resource. The block model was developed on 10m x 10m x 5m (East, North, Bench) uniform block size assuming a 5m bench height would be suitable for the production scale of a future mining scenario. Modelling of mineralisation was aimed at a minimum precision of 2m which would ideally minimize the amount of ore loss or dilution incorporated into the resource block model. Domain boundaries are interpreted at a nominal 0.1-0.2% Copper (Cu%) cut-off and are used as hard boundaries for estimation.
Metallurgical factors or assumptions	 The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made. 	 Metallurgical assumptions are supported by laboratory-scale test work undertaken by ASMIN on behalf of Minera Southern Hemisphere for the Llahuin Project, coordinated by Mr Marcelo Villouta (Consultant). Six representative drill core and reverse air samples were subjected to Bond Work Index (BWI) hardness testing, flotation kinetics, and closed cycle flotation testing. Head assays confirm medium to low copper grades (0.278–0.461% Cu), low molybdenum (0.002–0.036% Mo) and low gold content (0.046–0.150 g/t Au). Grindability results indicate predominantly soft ore with BWI values between 11.74–12.49 kWh/t, except for one sample (UGM-3-6) which returned a moderate BWI of 14.84 kWh/t. Rougher and cleaner flotation tests demonstrated that reducing the grind size from 200 µm to 140 µm improved copper recoveries by 0.5–7.3 percentage points, though finer grind did not consistently enhance selectivity. Closed cycle flotation included a rougher stage, two to three cleaning stages and a scavenger flotation stage. Final concentrate grades ranged from 16.0% to 31.5% Cu; with the exception of UGM-3-6 (16.0% Cu), all concentrates exceeded 25% Cu, supporting potential commercial viability. Molybdenum grades in final concentrates ranged from 0.045%–1.797% Mo. Two samples (UGM-1, UGM-4) recorded Mo grades too low to enable efficient Cu–Mo separation under current conditions. Overall copper recoveries for closed cycle tests ranged from 75.4%–91.1%; excluding UGM-3-6, recoveries were consistently above 80% despite no circuit optimisation. Molybdenum recoveries were modest (13.5%–56.4%) but are expected to improve with optimised reagent schemes and flowsheet adjustments. Gold recoveries for closed cycle tests ranged from 40.9%–56.9% with final concentrate grades of 2.3–8.8 g/t Au. Dedicated flotation test work is recommended to enhance gold recovery. Settling tests show tailings can achieve

Criteria	JORC Code explanation	Commentary
Environmen- tal factors or assumptions	• Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	 This project is only at an early stage of development and no detailed assumptions regarding possible waste and process residue disposal options have been made yet. The high sulphide content of the deposit will require waste disposal engineering design and buffering but is considered manageable. The Llahuin area has several sources of carbonate material suitable for dump buffering. Future work will need to investigate local carbonate sources. No unusual flora or fauna was observed or expected at the project area however environmental surveys still remain to be done.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 A total of 1086 dry Archimedes bulk density measurement values from diamond drill core were derived from all the drilling programs to date. Approximately 412 bulk density measurement samples from within the 3 main mineralized resource area domains. There is a minor positive relationship of bulk density with Cu grade. Overall, the average bulk density of the non-mineralized zones is 2.68 and 2.67 for the mineralized zones. Only ~1% of bulk density measurements is above 3.00. The risk of assigning an inaccurate bulk density value to Llahuin mineralized zones is very low. The highest bulk density values measured within the Llahuin area is approximately 3.60 t/m³ which reflects a locally higher than usual Iron and sulphide content.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 The Mineral Resource for the Llahuin Project has been classified as Measured (code RCAT=1) in areas where the drilling grid is in the order of 30m x 30m to 40m x 40m. Most of the Indicated resources (code RCAT=2) is mineralized material outside of the measured resource zones where the drilling density is nominally greater than 40m x 40m and out to approximately 60m spacing. All material beyond 60m and out to ~75m Is designated as Inferred (RCAT=3). All classified resources are constrained by the Interpreted 3D mineralisation wireframe. No resources have been extrapolated beyond the wire-frame boundaries. The resource classification Item In the block model 'RCAT' has been 'annealed' manually using wire-frame overprints to rationalize some of the boundary complexity locally (for example the boundary between Measured and Indicated). This is a part of applying modifying factors with respect to resource estimation as per JORC guidelines. Material beyond ~75m from the nearest drill-hole sample point of observation is inherently low likelihood of economic viability or indeed unknown. These zones in so far as they are designated withing the outer parts of wireframes are designated as very low confidence and 'Un-Classified' (RCAT=4).
Audits or reviews	• The results of any audits or reviews of Mineral Resource estimates.	 No external audits of the Mineral Resource estimate have been undertaken at this time. The resource model has been partially audited by Southern Hemisphere Mining personnel as apart of operational optimization and continuous improvement protocols.

Criteria	JORC Code explanation	Commentary
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 The relative accuracy of the Mineral Resource estimate is reflected in the classification of the Mineral Resource as Measured, Inferred and indicated when sufficiently drilled to a ~30m x 30m and out to ~40m x 40m or 50m x 50m. The Mineral Resource statement reflects the overall assessed completeness and accuracy of the underlying data and the confidence of the geological Interpretation as It affects the confidence of local and global scale estimation. No significant mineral production has taken place to date and thus production data is not available.

"The information in this Table 1 that relates to Mineral Resource Estimation is based on and fairly represents information compiled by Mr Stephen Hyland, a Competent Person who is a Fellow of the Australasian Institute of Mining and Metallurgy (FAusIMM) and a consultant to Southern Hemisphere Mining. Mr Hyland has sufficient experience relevant to the style of mineralisation and type of deposit under consideration to qualify as a Competent Person as defined in the 2012 Edition of the JORC Code."

"Mr Hyland consents to the inclusion in this release of the matters based on his information in the form and context in which it appears."

APPENDIX 1- Drill hole Information

		Collar L	ocation V	NGS84			From	То	Cu Grade	Mo Grade	Au Grade	CuEq	Width	
Hole ID	Depth	East	North	RL	Dip	Azimuth	m	m	%	ppm	ppm	%	m	Intersection Description
21LHRC002	100	307618	6531450	1335	-60	301	0	25	0.25	2.24	0.04	0.30	25	25m at 0.3% CuEg
21LHRC002							48	60	0.31	6.00	0.05	0.38	12	12m at 0.38% CuEg
21LHRC003	90	307594	6531445	1332	-63	293	0	90	0.53	12.97	0.11	0.67	90	90m at 0.67% CuEq
21LHRC003							0	83	0.55	11.75	0.11	0.69	83	83m at 0.69% CuEg
21LHRC009	80	307151	6530759	1356	-53	302	0	76	0.17	8.82	0.35	0.61	76	76m at 0.61% CuEq
21LHRC009							45	65	0.21	7.80	0.51	0.86	20	20m at 0.86% CuEq
21LHRC010	90	306913	6530771	1387	-58	303	0	58	0.24	14.66	0.13	0.41	58	58m at 0.41% CuEq
21LHRC010							18	32	0.46	13.21	0.26	0.79	14	14m at 0.79% CuEq
22LHDD025	59.65	307555	6531534	1339	-60	301	0	59.65	0.44	4.08	0.11	0.59	59.65	59.65m at 0.59% CuEq
22LHDD025							10	59.65	0.48	4.53	0.13	0.64	49.65	49.65m at 0.64% CuEg
22LHDD026	131.25	307158	6530788	1349	-59	301	0	32	0.25	5.45	0.28	0.60	32	32m at 0.6% CuEq
22LHDD026							10	31	0.27	6.22	0.32	0.67	21	21m at 0.67% CuEq
22LHDD026							33	62	0.18	5.91	0.38	0.66	29	29m at 0.66% CuEq
22LHDD026							33	49	0.22	3.29	0.40	0.72	16	16m at 0.72% CuEq
22LHDD026							63	114	0.14	7.93	0.22	0.42	51	51m at 0.42% CuEq
22LHRC011	100	306946	6530752	1390	-53	304	0	100	0.19	30.25	0.16	0.41	100	100m at 0.41% CuEq
22LHRC011							0	11	0.30	9.64	0.23	0.59	11	11m at 0.59% CuEq
22LHRC011							13	31	0.20	8.17	0.19	0.44	18	18m at 0.44% CuEq
22LHRC011							81	94	0.27	72.62	0.26	0.63	13	13m at 0.63% CuEq
22LHRC013	80	307151	6530718	1364	-61	295	7	54	0.20	11.49	0.38	0.67	47	47m at 0.67% CuEq
22LHRC013							7	23	0.21	5.63	0.49	0.82	16	16m at 0.82% CuEq
22LHRC013							24	54	0.20	14.47	0.33	0.61	30	30m at 0.61% CuEq
22LHRC014	80	307144	6530684	1368	-65	307	1	49	0.22	4.25	0.23	0.51	48	48m at 0.51% CuEq
22LHRC014							1	35	0.27	4.56	0.28	0.63	34	34m at 0.63% CuEq
22LHRC015	110	307568	6531435	1330	-56	302	1	42	0.35	5.98	0.05	0.42	41	41m at 0.42% CuEq
22LHRC015							1	14	0.45	3.92	0.06	0.53	13	13m at 0.53% CuEq
22LHRC015							43	70	0.32	51.44	0.05	0.41	27	27m at 0.41% CuEq
22LHRC015							51	64	0.40	14.54	0.06	0.49	13	13m at 0.49% CuEq
22LHRC015							71	110	0.36	17.97	0.08	0.46	39	39m at 0.46% CuEq
22LHRC015							79	104	0.41	19.64	0.07	0.51	25	25m at 0.51% CuEq
22LHRC016	110	307178	6530715	1368	-56	293	1	69	0.17	9.85	0.26	0.51	68	68m at 0.51% CuEq
22LHRC016							2	30	0.20	3.96	0.28	0.55	28	28m at 0.55% CuEq
22LHRC016							42	54	0.20	12.92	0.33	0.62	12	12m at 0.62% CuEq
22LHRC017	95	307177	6530745	1359	-61	295	0	36	0.20	7.00	0.22	0.48	36	36m at 0.48% CuEq
22LHRC017							0	17	0.23	6.00	0.33	0.65	17	17m at 0.65% CuEq
22LHRC017							40	83	0.15	13.40	0.26	0.48	43	43m at 0.48% CuEq
22LHRC017							46	64	0.18	18.11	0.30	0.56	18	18m at 0.56% CuEq
22LHRC018	59	307549	6531536	1337	-60	301	0	53	0.46	4.76	0.14	0.63	53	53m at 0.63% CuEq
22LHRC020	101	307575	6531560	1336	-57	309	0	101	0.39	14.55	0.08	0.51	101	101m at 0.51% CuEq
22LHRC020							25	42	0.52	7.88	0.14	0.70	17	17m at 0.7% CuEq
22LHRC021	110	307164	6530672	1376	-57	298	0	70	0.18	7.39	0.26	0.51	70	70m at 0.51% CuEq
22LHRC021							0	21	0.22	2.62	0.39	0.70	21	21m at 0.7% CuEq
22LHRC022	110	307603	6531539	1343	-58	289	6	110	0.44	10.46	0.07	0.53	104	104m at 0.53% CuEq
22LHRC022							74	90	0.65	8.63	0.08	0.75	16	16m at 0.75% CuEq
22LHRC022							91	110	0.60	10.21	0.14	0.78	19	19m at 0.78% CuEq
22LHRC023	120	307162	6530441	1392	-58	304	0	25	0.26	7.72	0.07	0.35	25	25m at 0.35% CuEq
22LHRC023							15	25	0.33	9.40	0.07	0.42	10	10m at 0.42% CuEq

	Donth	Collar L	ocation V	VGS84	Din	Animuth	From	То	Cu Grade	Mo Grade	Au Grade	CuEq	Width	Intersection Description
Hole ID	Depth	East	North	RL	Dip	Azimuth	m	m	%	ppm	ppm	%	m	Intersection Description
22LHRC023							26	104	0.19	19.83	0.08	0.31	78	78m at 0.31% CuEq
22LHRC023							105	120	0.23	33.00	0.18	0.47	15	15m at 0.47% CuEq
DDLLA004	644.2	307559	6531302	1325	-65	301	120	192	0.18	13.33	0.11	0.33	72	72m at 0.33% CuEq
DDLLA004							194	280	0.20	4.88	0.11	0.34	86	86m at 0.34% CuEq
DDLLA011	509.5	307578	6531372	1320	-59	293	16	94	0.26	11.54	0.04	0.31	78	78m at 0.31% CuEq
DDLLA011							152	188	0.22	7.22	0.29	0.58	36	36m at 0.58% CuEq
DDLLA011							158	172	0.22	7.14	0.26	0.54	14	14m at 0.54% CuEq
DDLLA011							174	184	0.32	4.00	0.56	1.02	10	10m at 1.02% CuEq
DDLLA011							190	200	0.29	4.00	0.29	0.66	10	10m at 0.66% CuEq
DDLLA011							206	218	0.19	6.67	0.14	0.37	12	12m at 0.37% CuEq
DDLLA011							256	282	0.22	6.92	0.07	0.31	26	26m at 0.31% CuEq
DDLLA011							258	268	0.29	6.00	0.09	0.40	10	10m at 0.4% CuEq
DDLLA011							284	346	0.23	10.00	0.06	0.31	62	62m at 0.31% CuEq
DDLLA011							286	304	0.30	4.44	0.13	0.46	18	18m at 0.46% CuEq
DDLLA012	429.25	307509	6531409	1311	-60	307	90	294	0.27	8.14	0.16	0.48	204	204m at 0.48% CuEq
DDLLA016A	31.25	307518	6531600	1320	-60	302	0	19	0.34	1.34	0.07	0.43	19	19m at 0.43% CuEq
DDLLA016A							20	31	0.77	2.00	0.08	0.88	11	11m at 0.88% CuEq
DDLLA018	202.55	307122	6530711	1355	-59	62	0	62	0.17	0.00	0.24	0.46	62	62m at 0.46% CuEq
DDLLA018							0	16	0.21	0.00	0.37	0.67	16	16m at 0.67% CuEq
DDLLA018							18	42	0.22	0.00	0.28	0.57	24	24m at 0.57% CuEq
DDLLA018							124	192	0.35	0.00	0.31	0.74	68	68m at 0.74% CuEq
DDLLA018							124	134	1.19	0.00	1.19	2.67	10	10m at 2.67% CuEq
DDLLA018							148	174	0.28	0.00	0.19	0.52	26	26m at 0.52% CuEq
DDLLA021	610.15	307542	6531389	1316	-60	30	2	474	0.54	66.31	0.23	0.87	472	472m at 0.87% CuEq
DDLLA021							64	74	0.46	50.00	0.05	0.55	10	10m at 0.55% CuEq
DDLLA021							96	432	0.67	73.81	0.31	1.10	336	336m at 1.1% CuEq
DDLLA027	521.5	307582	6531370	1321	-60	31	8	188	0.32	24.33	0.09	0.44	180	180m at 0.44% CuEq
DDLLA027							68	82	0.38	20.00	0.04	0.44	14	14m at 0.44% CuEq
DDLLA027							84	96	0.37	25.00	0.07	0.48	12	12m at 0.48% CuEq
DDLLA027							98	126	0.43	27.86	0.07	0.53	28	28m at 0.53% CuEq
DDLLA027							128	144	0.49	28.75	0.07	0.60	16	16m at 0.6% CuEq
DDLLA027							190	266	0.64	23.82	0.17	0.88	76	76m at 0.88% CuEq
DDLLA027							200	248	0.80	18.13	0.17	1.02	48	48m at 1.02% CuEq
DDLLA027							250	266	0.53	35.00	0.28	0.90	16	16m at 0.9% CuEq
DDLLA027							268	450	0.41	120.44	0.10	0.60	182	182m at 0.6% CuEq
DDLLA027							268	328	0.60	68.33	0.21	0.90	60	60m at 0.9% CuEq
DDLLA027							330	428	0.36	163.67	0.05	0.52	98	98m at 0.52% CuEq
DDLLA028	401.2	306961	6530935	1355	-60	63	70	256	0.37	54.79	0.09	0.51	186	186m at 0.51% CuEq
DDLLA028							116	128	0.45	58.33	0.10	0.61	12	12m at 0.61% CuEq
DDLLA028							130	208	0.48	77.44	0.11	0.66	78	78m at 0.66% CuEq
DDLLA028							228	254	0.46	56.15	0.12	0.63	26	26m at 0.63% CuEq
DDLLA028							282	302	0.22	811.00	0.08	0.79	20	20m at 0.79% CuEq
DDLLA028							288	298	0.31	1480.00	0.11	1.29	10	10m at 1.29% CuEq
DDLLA029	248.5	307146	6530839	1339	-67	214	0	40	0.24	17.50	0.17	0.46	40	40m at 0.46% CuEq
DDLLA029							0	26	0.29	21.15	0.16	0.49	26	26m at 0.49% CuEq
DDLLA029							28	38	0.18	11.00	0.22	0.46	10	10m at 0.46% CuEq
DDLLA029							42	108	0.11	15.46	0.15	0.31	66	66m at 0.31% CuEq
DDLLA029							46	56	0.15	22.00	0.17	0.38	10	10m at 0.38% CuEq
DDLLA030	180.9	307057	6530863	1340	-67	355	0	172	0.24	48.43	0.18	0.50	172	172m at 0.5% CuEq

	Donth	Collar L	ocation V	VGS84	Din	Animuth	From	То	Cu Grade	Mo Grade	Au Grade	CuEq	Width	Intersection Description
Hole ID	Depth	East	North	RL	pin	Azimuth	m	m	%	ppm	ppm	%	m	Intersection Description
DDLLA030							6	42	0.31	11.39	0.27	0.66	36	36m at 0.66% CuEq
DDLLA030							46	62	0.25	13.13	0.35	0.69	16	16m at 0.69% CuEq
DDLLA030							74	90	0.47	106.25	0.22	0.80	16	16m at 0.8% CuEq
DDLLA030							108	124	0.21	93.75	0.21	0.53	16	16m at 0.53% CuEq
DDLLA030							128	138	0.23	86.00	0.11	0.42	10	10m at 0.42% CuEq
DDLLA030							146	156	0.31	58.00	0.17	0.56	10	10m at 0.56% CuEq
DDLLA031	437.5	307210	6529506	1433	-70	163	0	184	0.17	86.79	0.07	0.31	184	184m at 0.31% CuEq
DDLLA031							6	30	0.26	18.75	0.13	0.43	24	24m at 0.43% CuEq
DDLLA031							54	64	0.27	70.00	0.17	0.52	10	10m at 0.52% CuEq
DDLLA031							186	244	0.17	185.17	0.05	0.34	58	58m at 0.34% CuEq
DDLLA031							248	294	0.07	442.61	0.04	0.37	46	46m at 0.37% CuEq
DDLLA031							254	266	0.10	665.00	0.03	0.52	12	12m at 0.52% CuEq
DDLLA031							276	288	0.07	598.33	0.04	0.45	12	12m at 0.45% CuEq
DDLLA032	545.3	307419	6531453	1306	-70	26	0	354	0.28	23.11	0.14	0.48	354	354m at 0.48% CuEq
DDLLA032							234	344	0.34	16.91	0.28	0.70	110	110m at 0.7% CuEq
DDLLA032							364	476	0.23	300.00	0.09	0.51	112	112m at 0.51% CuEq
DDLLA032							364	408	0.33	84.55	0.16	0.58	44	44m at 0.58% CuEq
DDLLA032							426	450	0.25	951.67	0.06	0.87	24	24m at 0.87% CuEq
DDLLA033	442	307510	6531412	1312	-59	42	0	60	0.24	22.67	0.03	0.29	60	60m at 0.29% CuEq
DDLLA033							42	52	0.33	22.00	0.06	0.41	10	10m at 0.41% CuEq
DDLLA033							62	130	0.40	29.56	0.10	0.55	68	68m at 0.55% CuEq
DDLLA033							132	182	0.27	24.60	0.10	0.40	50	50m at 0.4% CuEq
DDLLA033							134	158	0.45	30.83	0.13	0.63	24	24m at 0.63% CuEq
DDLLA033							184	230	0.24	14.57	0.17	0.46	46	46m at 0.46% CuEq
DDLLA033							200	228	0.33	13.21	0.24	0.63	28	28m at 0.63% CuEq
DDLLA033							232	332	0.50	44.90	0.20	0.78	100	100m at 0.78% CuEq
DDLLA033							232	252	0.55	23.50	0.30	0.94	20	20m at 0.94% CuEq
DDLLA033							254	284	0.64	54.67	0.35	1.11	30	30m at 1.11% CuEq
DDLLA033							292	302	0.64	38.00	0.14	0.84	10	10m at 0.84% CuEq
DDLLA033							304	324	0.50	32.00	0.10	0.65	20	20m at 0.65% CuEq
DDLLA033							336	442	0.32	143.96	0.06	0.47	106	106m at 0.47% CuEq
DDLLA033							338	372	0.45	78.82	0.09	0.62	34	34m at 0.62% CuEq
DDLLA033							400	442	0.31	206.67	0.04	0.48	42	42m at 0.48% CuEq
DDLLA034	100.5	307019	6530979	1350	-90	244	0	100.5	0.39	15.03	0.09	0.52	100.5	100.5m at 0.52% CuEq
DDLLA034							6	36	0.35	5.00	0.08	0.45	30	30m at 0.45% CuEq
DDLLA034							44	78	0.52	26.77	0.13	0.70	34	34m at 0.7% CuEq
DDLLA034							88	100.5	0.55	20.80	0.08	0.67	12.5	12.5m at 0.67% CuEq
DDLLA035	402	307625	6531358	1327	-60	1	6	148	0.29	90.21	0.07	0.42	142	142m at 0.42% CuEq
DDLLA035							52	82	0.34	82.00	0.05	0.44	30	30m at 0.44% CuEq
DDLLA035							92	132	0.39	137.50	0.15	0.65	40	40m at 0.65% CuEq
DDLLA035							150	168	0.28	51.11	0.07	0.39	18	18m at 0.39% CuEq
DDLLA035							150	166	0.29	52.50	0.07	0.41	16	16m at 0.41% CuEq
DDLLA035							170	202	0.31	73.75	0.08	0.45	32	32m at 0.45% CuEq
DDLLA035							204	388	0.32	176.96	0.08	0.51	184	184m at 0.51% CuEq
DDLLA035							204	244	0.39	92.00	0.10	0.57	40	40m at 0.57% CuEq
DDLLA035							246	322	0.36	296.05	0.11	0.66	76	76m at 0.66% CuEq
DDLLA035							324	334	0.26	132.00	0.04	0.38	10	10m at 0.38% CuEq
DDLLA036	218.5	307380	6531480	1301	-60	26	0	218.5	0.21	41.30	0.03	0.28	218.5	218.5m at 0.28% CuEq
DDLLA036							168	206	0.30	31.05	0.05	0.38	38	38m at 0.38% CuEq

	Donth	Collar L	ocation V	VGS84	Din	Animuth	From	То	Cu Grade	Mo Grade	Au Grade	CuEq	Width	Intersection Description
Hole ID	Depth	East	North	RL	pin	Azimuth	m	m	%	ppm	ppm	%	m	intersection Description
DDLLA037	390	307667	6531331	1334	-61	32	0	332	0.23	105.60	0.03	0.33	332	332m at 0.33% CuEq
DDLLA037							266	306	0.34	149.50	0.04	0.47	40	40m at 0.47% CuEq
DDLLA038	365.5	307457	6531534	1318	-60	31	0	341	0.36	66.53	0.05	0.46	341	341m at 0.46% CuEq
DDLLA038							144	210	0.39	47.88	0.07	0.51	66	66m at 0.51% CuEq
DDLLA038							212	228	0.45	87.50	0.05	0.56	16	16m at 0.56% CuEq
DDLLA038							242	318	0.34	159.21	0.07	0.51	76	76m at 0.51% CuEq
DDLLA040	446.5	307566	6531441	1331	-60	31	0	120	0.42	12.50	0.07	0.50	120	120m at 0.5% CuEq
DDLLA040							0	46	0.54	7.83	0.09	0.65	46	46m at 0.65% CuEq
DDLLA040							58	68	0.38	5.00	0.07	0.48	10	10m at 0.48% CuEq
DDLLA040							82	104	0.50	31.36	0.07	0.60	22	22m at 0.6% CuEq
DDLLA040							122	200	0.35	19.10	0.06	0.44	78	78m at 0.44% CuEq
DDLLA040							134	148	0.41	26.43	0.08	0.53	14	14m at 0.53% CuEq
DDLLA040							156	178	0.45	20.00	0.09	0.58	22	22m at 0.58% CuEq
DDLLA040							180	198	0.34	20.56	0.05	0.41	18	18m at 0.41% CuEq
DDLLA040							208	258	0.47	48.40	0.04	0.55	50	50m at 0.55% CuEq
DDLLA040							208	256	0.49	46.25	0.04	0.56	48	48m at 0.56% CuEq
DDLLA040							260	372	0.29	280.36	0.04	0.50	112	112m at 0.5% CuEq
DDLLA040							260	336	0.33	384.74	0.05	0.61	76	76m at 0.61% CuEq
DDLLA040							342	352	0.33	94.00	0.04	0.44	10	10m at 0.44% CuEq
DDLLA041	305.5	307614	6531519	1346	-60	41	0	158	0.39	54.11	0.08	0.52	158	158m at 0.52% CuEq
DDLLA041							2	38	0.50	10.56	0.11	0.65	36	36m at 0.65% CuEq
DDLLA041							44	72	0.45	18.93	0.12	0.61	28	28m at 0.61% CuEq
DDLLA041							76	144	0.39	91.18	0.06	0.51	68	68m at 0.51% CuEq
DDLLA041							160	232	0.21	134.44	0.02	0.32	72	72m at 0.32% CuEq
DDLLA042	368.15	307498	6531519	1326	-58	43	0	80	0.66	16.75	0.08	0.77	80	80m at 0.77% CuEq
DDLLA042							0	72	0.71	14.44	0.09	0.83	72	72m at 0.83% CuEq
DDLLA042							82	336	0.34	58.74	0.05	0.43	254	254m at 0.43% CuEq
DDLLA042							92	126	0.40	11.77	0.09	0.52	34	34m at 0.52% CuEq
DDLLA042							128	148	0.39	12.00	0.07	0.49	20	20m at 0.49% CuEq
DDLLA042							150	184	0.38	21.18	0.04	0.45	34	34m at 0.45% CuEq
DDLLA042							186	256	0.41	86.57	0.04	0.51	70	70m at 0.51% CuEq
DDLLA042							270	284	0.26	95.71	0.12	0.47	14	14m at 0.47% CuEq
DDLLA043	500.5	307453	6531321	1315	-59	35	88	246	0.21	15.06	0.14	0.39	158	158m at 0.39% CuEq
DDLLA043							180	194	0.31	14.29	0.30	0.68	14	14m at 0.68% CuEq
DDLLA043							196	240	0.24	15.00	0.23	0.53	44	44m at 0.53% CuEq
DDLLA043							250	354	0.24	15.00	0.14	0.43	104	104m at 0.43% CuEq
DDLLA043							258	282	0.29	20.00	0.10	0.43	24	24m at 0.43% CuEq
DDLLA043							294	324	0.36	10.00	0.28	0.71	30	30m at 0.71% CuEq
DDLLA043							326	338	0.23	10.00	0.16	0.43	12	12m at 0.43% CuEq
DDLLA043							356	462	0.44	13.21	0.32	0.84	106	106m at 0.84% CuEq
DDLLA043							406	456	0.70	10.40	0.57	1.42	50	50m at 1.42% CuEq
DDLLA044	284.6	307670	6531447	1335	-60	31	0	248	0.27	99.92	0.03	0.35	248	248m at 0.35% CuEq
DDLLA044							18	50	0.33	39.38	0.04	0.40	32	32m at 0.4% CuEq
DDLLA044							70	82	0.30	90.00	0.04	0.40	12	12m at 0.4% CuEq
DDLLA044							100	114	0.37	74.29	0.03	0.44	14	14m at 0.44% CuEq
DDLLA044							120	134	0.30	111.43	0.02	0.38	14	14m at 0.38% CuEq
DDLLA044							142	168	0.36	246.92	0.02	0.54	26	26m at 0.54% CuEq
DDLLA044							212	232	0.32	79.00	0.02	0.39	20	20m at 0.39% CuEq
DDLLA045	398.5	307543	6531474	1334	-71	60	0	14	0.30	10.00	0.06	0.38	14	14m at 0.38% CuEq

	Donth	Collar L	ocation V.	VGS84	Din	Azimuth	From	То	Cu Grade	Mo Grade	Au Grade	CuEq	Width	Intersection Description
Hole ID	Deptil	East	North	RL	pip	Azimum	m	m	%	ppm	ppm	%	m	Intersection Description
DDLLA045							34	70	0.21	15.56	0.07	0.31	36	36m at 0.31% CuEq
DDLLA045							44	54	0.29	10.00	0.13	0.45	10	10m at 0.45% CuEq
DDLLA045							102	206	0.41	23.27	0.10	0.55	104	104m at 0.55% CuEq
DDLLA045							116	150	0.49	18.82	0.13	0.66	34	34m at 0.66% CuEq
DDLLA045							152	174	0.47	11.82	0.14	0.65	22	22m at 0.65% CuEq
DDLLA045							176	206	0.44	16.00	0.08	0.55	30	30m at 0.55% CuEq
DDLLA045							208	238	0.39	81.33	0.08	0.54	30	30m at 0.54% CuEq
DDLLA045							212	232	0.53	82.00	0.11	0.71	20	20m at 0.71% CuEq
DDLLA045							240	270	0.27	275.33	0.03	0.47	30	30m at 0.47% CuEq
DDLLA045							240	256	0.35	410.00	0.04	0.63	16	16m at 0.63% CuEq
DDLLA045							272	354	0.23	149.51	0.03	0.35	82	82m at 0.35% CuEq
DDLLA045							274	324	0.28	178.00	0.03	0.42	50	50m at 0.42% CuEq
DDLLA046	527.5	307566	6531304	1325	-60	31	136	146	0.22	80.00	0.03	0.31	10	10m at 0.31% CuEq
DDLLA046							148	196	0.25	44.17	0.06	0.34	48	48m at 0.34% CuEq
DDLLA046							154	170	0.28	48.75	0.09	0.42	16	16m at 0.42% CuEq
DDLLA046							210	326	0.27	23.62	0.12	0.43	116	116m at 0.43% CuEq
DDLLA046							212	228	0.33	27.50	0.07	0.43	16	16m at 0.43% CuEq
DDLLA046							234	270	0.32	18.33	0.18	0.56	36	36m at 0.56% CuEq
DDLLA046							338	408	0.26	23.71	0.12	0.42	70	70m at 0.42% CuEq
DDLLA046							338	358	0.27	24.00	0.16	0.49	20	20m at 0.49% CuEq
DDLLA046							368	398	0.27	22.00	0.13	0.44	30	30m at 0.44% CuEq
DDLLA046							410	480	0.26	189.71	0.07	0.45	70	70m at 0.45% CuEq
DDLLA046							416	428	0.27	153.33	0.09	0.47	12	12m at 0.47% CuEq
DDLLA046							430	480	0.27	216.80	0.07	0.47	50	50m at 0.47% CuEq
DDLLA047	338.5	307625	6531448	1335	-60	37	0	320	0.39	86.13	0.06	0.52	320	320m at 0.52% CuEq
DDLLA047							0	118	0.49	21.53	0.05	0.57	118	118m at 0.57% CuEq
DDLLA047							120	140	0.41	67.00	0.04	0.49	20	20m at 0.49% CuEq
DDLLA047							142	172	0.42	111.33	0.04	0.53	30	30m at 0.53% CuEq
DDLLA047							178	206	0.38	122.86	0.11	0.59	28	28m at 0.59% CuEq
DDLLA047							208	292	0.35	163.33	0.06	0.52	84	84m at 0.52% CuEq
DDLLA048	401.2	307154	6529563	1447	-65	91	106	146	0.22	16.00	0.09	0.35	40	40m at 0.35% CuEq
DDLLA048							120	140	0.29	18.00	0.13	0.46	20	20m at 0.46% CuEq
DDLLA048							216	248	0.23	11.25	0.07	0.32	32	32m at 0.32% CuEq
DDLLA048							220	234	0.35	12.86	0.11	0.50	14	14m at 0.5% CuEq
DDLLA049	300	306907	6530837	1373	-73	66	96	138	0.17	31.91	0.07	0.28	42	42m at 0.28% CuEq
DDLLA049							140	198	0.16	56.90	0.07	0.28	58	58m at 0.28% CuEq
DDLLA049							210	230	0.19	191.00	0.16	0.50	20	20m at 0.5% CuEq
DDLLA052	362.5	307143	6529506	1448	-68	98	8	202	0.14	81.75	0.07	0.28	194	194m at 0.28% CuEq
DDLLA052							86	100	0.24	87.14	0.09	0.41	14	14m at 0.41% CuEq
DDLLA052							248	304	0.18	63.93	0.07	0.31	56	56m at 0.31% CuEq
DDLLA052							256	268	0.39	103.33	0.14	0.63	12	12m at 0.63% CuEq
DDLLA054	338.5	306876	6530866	1369	-80	61	94	132	0.25	117.90	0.07	0.40	38	38m at 0.4% CuEq
DDLLA054							96	118	0.34	189.09	0.08	0.54	22	22m at 0.54% CuEq
DDLLA054					ļ		134	182	0.16	66.67	0.07	0.28	48	48m at 0.28% CuEq
DDLLA054					ļ		144	154	0.28	42.00	0.10	0.43	10	10m at 0.43% CuEq
DDLLA056	323.5	306827	6530794	1384	-73	59	198	234	0.13	236.67	0.13	0.43	36	36m at 0.43% CuEq
LLHBM03	506.15	307118	6530728	1353	-55	314	0	64	0.15	4.26	0.20	0.40	64	64m at 0.4% CuEq
LLHBM03					ļ		0	20	0.18	2.67	0.26	0.50	20	20m at 0.5% CuEq
LLHBM03							26	42	0.18	4.19	0.29	0.55	16	16m at 0.55% CuEq

	Donth	Collar L	ocation V	VGS84	Din	Azimuth	From	То	Cu Grade	Mo Grade	Au Grade	CuEq	Width	Intersection Description
HOLE ID	Deptil	East	North	RL	Dip	Azimuti	m	m	%	ppm	ppm	%	m	intersection Description
LLHBM03							184	216	0.27	27.97	0.12	0.43	32	32m at 0.43% CuEq
LLHBM03							184	194	0.27	42.83	0.13	0.45	10	10m at 0.45% CuEq
LLHBM03							206	216	0.33	23.97	0.16	0.54	10	10m at 0.54% CuEq
LLHBM03							266	284	0.21	15.36	0.15	0.42	18	18m at 0.42% CuEq
RCLLA001	208	307662	6531495	1340	-61	304	0	172	0.44	4.27	0.21	0.71	172	172m at 0.71% CuEq
RCLLA001							1	17	0.49	3.44	0.05	0.55	16	16m at 0.55% CuEq
RCLLA001							18	86	0.48	3.68	0.42	1.00	68	68m at 1% CuEq
RCLLA001							88	135	0.51	5.32	0.08	0.62	47	47m at 0.62% CuEq
RCLLA001							160	170	0.38	7.50	0.10	0.51	10	10m at 0.51% CuEq
RCLLA001							173	189	0.32	2.19	0.09	0.43	16	16m at 0.43% CuEq
RCLLA001							190	208	0.36	5.00	0.09	0.48	18	18m at 0.48% CuEq
RCLLA004	244	307596	6531581	1333	-61	309	0	29	0.41	3.10	0.05	0.47	29	29m at 0.47% CuEq
RCLLA004							42	96	0.35	8.70	0.05	0.42	54	54m at 0.42% CuEq
RCLLA004							48	68	0.37	7.50	0.08	0.47	20	20m at 0.47% CuEq
RCLLA004							70	85	0.41	11.33	0.05	0.47	15	15m at 0.47% CuEq
RCLLA004							106	244	0.25	30.80	0.05	0.33	138	138m at 0.33% CuEq
RCLLA004							143	163	0.31	32.00	0.05	0.39	20	20m at 0.39% CuEq
RCLLA005	200	307620	6531544	1342	-56	310	30	43	0.47	0.00	0.00	0.47	13	13m at 0.47% CuEq
RCLLA005							31	42	0.52	0.00	0.00	0.52	11	11m at 0.52% CuEq
RCLLA005							49	200	0.35	0.00	0.00	0.35	151	151m at 0.35% CuEq
RCLLA005							108	134	0.42	0.00	0.01	0.43	26	26m at 0.43% CuEq
RCLLA006	243	307606	6531470	1339	-60	301	1	54	0.38	5.94	0.09	0.50	53	53m at 0.5% CuEq
RCLLA006							1	23	0.48	2.96	0.17	0.70	22	22m at 0.7% CuEq
RCLLA006							156	243	0.33	10.29	0.16	0.53	87	87m at 0.53% CuEq
RCLLA006							196	212	0.46	6.88	0.24	0.77	16	16m at 0.77% CuEq
RCLLA006							213	243	0.42	5.83	0.23	0.70	30	30m at 0.7% CuEq
RCLLA011	220	307576	6531534	1343	-63	303	0	220	0.39	7.64	0.08	0.49	220	220m at 0.49% CuEq
RCLLA011							45	111	0.47	9.70	0.10	0.59	66	66m at 0.59% CuEq
RCLLA013	203	307665	6531542	1341	-58	304	0	33	0.48	6.97	0.08	0.58	33	33m at 0.58% CuEq
RCLLA013							1	32	0.49	6.29	0.08	0.60	31	31m at 0.6% CuEq
RCLLA013							34	59	0.39	7.20	0.05	0.45	25	25m at 0.45% CuEq
RCLLA013							37	57	0.42	7.50	0.05	0.49	20	20m at 0.49% CuEq
RCLLA013							60	92	0.26	13.44	0.04	0.31	32	32m at 0.31% CuEq
RCLLA013							61	75	0.33	7.86	0.04	0.38	14	14m at 0.38% CuEq
RCLLA013							164	202	0.44	45.00	0.07	0.55	38	38m at 0.55% CuEq
RCLLA013							165	201	0.45	43.89	0.08	0.57	36	36m at 0.57% CuEq
RCLLA015	196	307618	6531353	1327	-59	306	142	160	0.21	0.00	0.05	0.28	18	18m at 0.28% CuEq
RCLLA016	198	307648	6531448	1334	-59	304	0	166	0.40	0.00	0.10	0.52	166	166m at 0.52% CuEq
RCLLA016							0	66	0.50	0.00	0.10	0.62	66	66m at 0.62% CuEq
RCLLA017	194	307492	6531575	1322	-59	301	0	40	0.48	15.50	0.05	0.55	40	40m at 0.55% CuEq
RCLLA017							0	10	0.54	10.00	0.05	0.60	10	10m at 0.6% CuEq
RCLLA018	192	307449	6531317	1315	-60	305	102	166	0.18	13.44	0.10	0.31	64	64m at 0.31% CuEq
RCLLA019	204	307522	6531331	1321	-65	297	108	124	0.15	0.00	0.13	0.31	16	16m at 0.31% CuEq
RCLLA019							126	174	0.14	0.00	0.12	0.28	48	48m at 0.28% CuEq
RCLLA020	194	307466	6531429	1309	-63	304	0	194	0.20	0.00	0.10	0.33	194	194m at 0.33% CuEq
RCLLA020							46	68	0.28	0.00	0.14	0.46	22	22m at 0.46% CuEq
RCLLA020							184	194	0.32	0.00	0.41	0.83	10	10m at 0.83% CuEq
RCLLA021	216	307517	6531454	1323	-62	296	62	170	0.31	0.00	0.07	0.39	108	108m at 0.39% CuEq
RCLLA021							62	78	0.39	0.00	0.05	0.45	16	16m at 0.45% CuEq

	Donth	Collar L	ocation V	VGS84	Din	Animuth	From	То	Cu Grade	Mo Grade	Au Grade	CuEq	Width	Intersection Description
Hole ID	Depth	East	North	RL	pin	Azimuth	m	m	%	ppm	ppm	%	m	intersection Description
RCLLA021							80	100	0.37	0.00	0.07	0.46	20	20m at 0.46% CuEq
RCLLA021							110	128	0.31	0.00	0.07	0.39	18	18m at 0.39% CuEq
RCLLA021							144	168	0.31	0.00	0.09	0.43	24	24m at 0.43% CuEq
RCLLA021							172	188	0.31	0.00	0.10	0.44	16	16m at 0.44% CuEq
RCLLA021							172	216	0.31	0.00	0.12	0.45	44	44m at 0.45% CuEq
RCLLA021							190	206	0.39	0.00	0.16	0.59	16	16m at 0.59% CuEq
RCLLA022	280	307166	6530579	1404	-47	68	0	74	0.16	0.00	0.38	0.63	74	74m at 0.63% CuEq
RCLLA022							0	14	0.26	0.00	0.53	0.92	14	14m at 0.92% CuEq
RCLLA022							16	48	0.20	0.00	0.45	0.76	32	32m at 0.76% CuEq
RCLLA023	222	307114	6530512	1410	-63	70	0	90	0.20	0.00	0.17	0.41	90	90m at 0.41% CuEq
RCLLA023							0	34	0.22	0.00	0.20	0.47	34	34m at 0.47% CuEq
RCLLA023							38	48	0.23	0.00	0.16	0.43	10	10m at 0.43% CuEq
RCLLA023							58	70	0.21	0.00	0.17	0.42	12	12m at 0.42% CuEq
RCLLA023							76	88	0.21	0.00	0.20	0.46	12	12m at 0.46% CuEq
RCLLA023							92	132	0.10	0.00	0.15	0.29	40	40m at 0.29% CuEq
RCLLA027	222	307494	6531516	1326	-59	304	2	34	0.50	0.00	0.04	0.55	32	32m at 0.55% CuEq
RCLLA027							36	170	0.25	0.00	0.03	0.29	134	134m at 0.29% CuEq
RCLLA027							36	62	0.42	0.00	0.02	0.45	26	26m at 0.45% CuEq
RCLLA027							70	80	0.31	0.00	0.04	0.35	10	10m at 0.35% CuEq
RCLLA027							174	222	0.30	0.00	0.03	0.33	48	48m at 0.33% CuEq
RCLLA027							208	222	0.63	0.00	0.03	0.67	14	14m at 0.67% CuEq
RCLLA029	200	307443	6531605	1310	-55	304	2	20	0.24	0.00	0.03	0.28	18	18m at 0.28% CuEq
RCLLA030	200	307751	6531450	1341	-56	308	138	148	0.33	0.00	0.03	0.37	10	10m at 0.37% CuEq
RCLLA030							154	166	0.30	0.00	0.03	0.34	12	12m at 0.34% CuEq
RCLLA031	56	307559	6531608	1324	-67	286	0	56	0.37	0.00	0.03	0.41	56	56m at 0.41% CuEq
RCLLA031							0	18	0.44	0.00	0.04	0.49	18	18m at 0.49% CuEq
RCLLA031							30	40	0.50	0.00	0.03	0.54	10	10m at 0.54% CuEq
RCLLA032	214	307504	6531634	1314	-56	309	0	52	0.24	0.00	0.05	0.30	52	52m at 0.3% CuEq
RCLLA032							12	22	0.25	0.00	0.05	0.31	10	10m at 0.31% CuEq
RCLLA032							70	96	0.35	0.00	0.08	0.45	26	26m at 0.45% CuEq
RCLLA032							70	82	0.44	0.00	0.11	0.57	12	12m at 0.57% CuEq
RCLLA034	208	307655	6531403	1329	-58	308	4	20	0.37	0.00	0.04	0.42	16	16m at 0.42% CuEq
RCLLA034							4	18	0.40	0.00	0.04	0.45	14	14m at 0.45% CuEq
RCLLA034							22	152	0.32	0.00	0.05	0.38	130	130m at 0.38% CuEq
RCLLA034							40	62	0.39	0.00	0.07	0.47	22	22m at 0.47% CuEq
RCLLA034							90	108	0.39	0.00	0.09	0.49	18	18m at 0.49% CuEq
RCLLA034							120	146	0.37	0.00	0.06	0.45	26	26m at 0.45% CuEq
RCLLA034							154	188	0.34	0.00	0.08	0.43	34	34m at 0.43% CuEq
RCLLA034							166	182	0.41	0.00	0.11	0.54	16	16m at 0.54% CuEq
RCLLA034							190	208	0.43	0.00	0.24	0.74	18	18m at 0.74% CuEq
RCLLA034							196	208	0.53	0.00	0.35	0.97	12	12m at 0.97% CuEq
RCLLA035	202	307539	6531386	1316	-58	299	80	132	0.22	0.00	0.15	0.40	52	52m at 0.4% CuEq
RCLLA035							82	102	0.22	0.00	0.20	0.47	20	20m at 0.47% CuEq
RCLLA035							116	130	0.32	0.00	0.16	0.52	14	14m at 0.52% CuEq
RCLLA035							166	202	0.20	0.00	0.15	0.38	36	36m at 0.38% CuEq
RCLLA035							186	200	0.25	0.00	0.20	0.49	14	14m at 0.49% CuEq
RCLLA036	210	307579	6531374	1320	-60	301	2	202	0.26	0.00	0.11	0.40	200	200m at 0.4% CuEq
RCLLA036							8	22	0.43	0.00	0.06	0.51	14	14m at 0.51% CuEq
RCLLA036							106	116	0.30	0.00	0.09	0.42	10	10m at 0.42% CuEq

	Donth	Collar L	ocation V	VGS84	Din	Azimuth	From	То	Cu Grade	Mo Grade	Au Grade	CuEq	Width	Intersection Description
Hole ID	Depth	East	North	RL	р	Azimuth	m	m	%	ppm	ppm	%	m	Intersection Description
RCLLA036							136	156	0.34	0.00	0.24	0.64	20	20m at 0.64% CuEq
RCLLA036							158	178	0.34	0.00	0.34	0.76	20	20m at 0.76% CuEq
RCLLA036							180	190	0.23	0.00	0.20	0.48	10	10m at 0.48% CuEq
RCLLA037	194	307476	6531355	1314	-60	307	106	194	0.17	0.00	0.17	0.38	88	88m at 0.38% CuEq
RCLLA037							158	176	0.24	0.00	0.28	0.59	18	18m at 0.59% CuEq
RCLLA037							178	192	0.19	0.00	0.23	0.48	14	14m at 0.48% CuEq
RCLLA042	190	307503	6531412	1311	-65	299	76	190	0.21	0.00	0.14	0.38	114	114m at 0.38% CuEq
RCLLA042							108	118	0.26	0.00	0.12	0.40	10	10m at 0.4% CuEq
RCLLA042							126	164	0.27	0.00	0.22	0.54	38	38m at 0.54% CuEq
RCLLA042							176	190	0.24	0.00	0.16	0.44	14	14m at 0.44% CuEq
RCLLA044	210	307709	6531433	1334	-60	296	2	24	0.27	0.00	0.01	0.28	22	22m at 0.28% CuEq
RCLLA044							92	198	0.40	0.00	0.08	0.50	106	106m at 0.5% CuEq
RCLLA044							100	154	0.36	0.00	0.07	0.44	54	54m at 0.44% CuEq
RCLLA044							156	184	0.56	0.00	0.16	0.76	28	28m at 0.76% CuEq
RCLLA050	200	307477	6531471	1319	-60	301	0	176	0.29	0.00	0.04	0.34	176	176m at 0.34% CuEq
RCLLA050							0	40	0.54	0.00	0.07	0.62	40	40m at 0.62% CuEq
RCLLA051	200	307453	6531534	1318	-64	303	0	66	0.25	0.00	0.03	0.28	66	66m at 0.28% CuEq
RCLLA051							4	16	0.33	0.00	0.05	0.38	12	12m at 0.38% CuEq
RCLLA054	222	307124	6530712	1355	-60	61	0	54	0.20	0.00	0.24	0.51	54	54m at 0.51% CuEq
RCLLA054							0	28	0.26	0.00	0.34	0.68	28	28m at 0.68% CuEq
RCLLA054							128	174	0.17	0.00	0.14	0.34	46	46m at 0.34% CuEq
RCLLA054							154	164	0.24	0.00	0.21	0.50	10	10m at 0.5% CuEq
RCLLA057	200	307202	6530755	1351	-55	67	0	46	0.20	0.00	0.20	0.44	46	46m at 0.44% CuEq
RCLLA057							4	40	0.21	0.00	0.22	0.49	36	36m at 0.49% CuEq
RCLLA057							48	66	0.20	0.00	0.20	0.46	18	18m at 0.46% CuEq
RCLLA057							50	60	0.29	0.00	0.30	0.66	10	10m at 0.66% CuEq
RCLLA057							72	118	0.11	0.00	0.13	0.28	46	46m at 0.28% CuEq
RCLLA059	186	307032	6530662	1389	-60	64	4	54	0.17	0.00	0.28	0.52	50	50m at 0.52% CuEq
RCLLA059							4	42	0.19	0.00	0.31	0.58	38	38m at 0.58% CuEq
RCLLA060	182	306938	6530678	1416	-60	64	14	152	0.15	0.00	0.14	0.33	138	138m at 0.33% CuEq
RCLLA060							78	90	0.21	0.00	0.25	0.52	12	12m at 0.52% CuEq
RCLLA060							92	132	0.22	0.00	0.24	0.52	40	40m at 0.52% CuEq
RCLLA061	190	306918	6530785	1386	-60	61	86	144	0.20	0.00	0.12	0.35	58	58m at 0.35% CuEq
RCLLA061							110	120	0.31	0.00	0.24	0.61	10	10m at 0.61% CuEq
RCLLA061							146	162	0.19	0.00	0.07	0.28	16	16m at 0.28% CuEq
RCLLA061							164	190	0.16	0.00	0.11	0.30	26	26m at 0.3% CuEq
RCLLA062	200	307158	6530436	1392	-63	59	0	82	0.17	0.00	0.08	0.28	82	82m at 0.28% CuEq
RCLLA063	200	307062	6530735	1363	-60	59	0	94	0.14	0.00	0.17	0.35	94	94m at 0.35% CuEq
RCLLA063							8	22	0.17	0.00	0.20	0.42	14	14m at 0.42% CuEq
RCLLA063							24	40	0.11	0.00	0.19	0.34	16	16m at 0.34% CuEq
RCLLA063							42	58	0.17	0.00	0.24	0.46	16	16m at 0.46% CuEq
RCLLA065	132	307176	6532178	1282	-60	271	28	44	0.34	0.00	0.79	1.32	16	16m at 1.32% CuEq
RCLLA065							30	44	0.38	0.00	0.89	1.50	14	14m at 1.5% CuEq
RCLLA069	180	307017	6530837	1353	-59	65	2	100	0.21	0.00	0.18	0.44	98	98m at 0.44% CuEq
RCLLA069							2	54	0.23	0.00	0.18	0.46	52	52m at 0.46% CuEq
RCLLA069							66	76	0.30	0.00	0.30	0.68	10	10m at 0.68% CuEq
RCLLA073	198	307564	6531442	1331	-62	307	0	34	0.33	0.00	0.02	0.36	34	34m at 0.36% CuEq
RCLLA073							38	60	0.35	0.00	0.02	0.38	22	22m at 0.38% CuEq
RCLLA073							42	60	0.41	0.00	0.03	0.44	18	18m at 0.44% CuEq

	Donth	Collar L	ocation V	VGS84	Din	Animuth	From	То	Cu Grade	Mo Grade	Au Grade	CuEq	Width	Intersection Description
Hole ID	Depth	East	North	RL	pin	Azimuth	m	m	%	ppm	ppm	%	m	intersection Description
RCLLA073							62	126	0.27	0.00	0.03	0.31	64	64m at 0.31% CuEq
RCLLA073							134	198	0.32	0.00	0.12	0.47	64	64m at 0.47% CuEq
RCLLA073							138	158	0.33	0.00	0.09	0.44	20	20m at 0.44% CuEq
RCLLA073							170	180	0.34	0.00	0.12	0.49	10	10m at 0.49% CuEq
RCLLA073							182	198	0.42	0.00	0.22	0.69	16	16m at 0.69% CuEq
RCLLA074	200	307120	6530623	1376	-61	56	0	46	0.16	0.00	0.25	0.47	46	46m at 0.47% CuEq
RCLLA074							0	12	0.25	0.00	0.38	0.72	12	12m at 0.72% CuEq
RCLLA074							22	32	0.18	0.00	0.27	0.51	10	10m at 0.51% CuEq
RCLLA075	200	307104	6530843	1339	-54	53	0	80	0.18	0.00	0.19	0.42	80	80m at 0.42% CuEq
RCLLA075							0	18	0.15	0.00	0.23	0.44	18	18m at 0.44% CuEq
RCLLA075							20	34	0.27	0.00	0.38	0.74	14	14m at 0.74% CuEq
RCLLA075							44	54	0.28	0.00	0.20	0.52	10	10m at 0.52% CuEq
RCLLA075							82	108	0.17	0.00	0.12	0.32	26	26m at 0.32% CuEq
RCLLA077	150	307162	6530792	1348	-47	57	0	18	0.28	0.00	0.22	0.55	18	18m at 0.55% CuEq
RCLLA077							20	58	0.24	0.00	0.30	0.61	38	38m at 0.61% CuEq
RCLLA077							28	58	0.27	0.00	0.33	0.68	30	30m at 0.68% CuEq
RCLLA077							70	120	0.27	0.00	0.38	0.75	50	50m at 0.75% CuEq
RCLLA077							72	86	0.23	0.00	0.30	0.60	14	14m at 0.6% CuEq
RCLLA077							88	120	0.30	0.00	0.45	0.87	32	32m at 0.87% CuEq
RCLLA077							122	144	0.18	0.00	0.20	0.42	22	22m at 0.42% CuEq
RCLLA083A	200	307227	6530551	1405	-60	61	0	68	0.12	0.00	0.13	0.28	68	68m at 0.28% CuEq
RCLLA092	220	306831	6530649	1431	-59	50	62	84	0.18	0.00	0.09	0.29	22	22m at 0.29% CuEq
RCLLA094	200	307110	6530905	1338	-56	58	4	50	0.25	0.00	0.04	0.30	46	46m at 0.3% CuEq
RCLLA094							6	24	0.39	0.00	0.07	0.47	18	18m at 0.47% CuEq
RCLLA095	210	306960	6530938	1355	-61	67	94	210	0.23	0.00	0.07	0.32	116	116m at 0.32% CuEq
RCLLA095							112	126	0.28	0.00	0.07	0.36	14	14m at 0.36% CuEq
RCLLA095							128	138	0.34	0.00	0.14	0.51	10	10m at 0.51% CuEq
RCLLA098	162	307480	6531354	1314	-60	34	92	162	0.22	0.00	0.15	0.41	70	70m at 0.41% CuEq
RCLLA098							134	154	0.29	0.00	0.18	0.52	20	20m at 0.52% CuEq
RCLLA103	210	307036	6530931	1347	-58	49	4	98	0.25	0.00	0.12	0.40	94	94m at 0.4% CuEq
RCLLA103							4	48	0.26	0.00	0.16	0.47	44	44m at 0.47% CuEq
RCLLA103							50	68	0.37	0.00	0.12	0.52	18	18m at 0.52% CuEq
RCLLA103							100	148	0.23	0.00	0.07	0.31	48	48m at 0.31% CuEq
RCLLA103							120	130	0.27	0.00	0.09	0.38	10	10m at 0.38% CuEq
RCLLA103							176	210	0.18	0.00	0.08	0.28	34	34m at 0.28% CuEq
RCLLA105	182	307228	6529478	1443	-61	305	0	90	0.22	0.00	0.09	0.32	90	90m at 0.32% CuEq
RCLLA105							0	16	0.32	0.00	0.10	0.45	16	16m at 0.45% CuEq
RCLLA105							22	32	0.31	0.00	0.12	0.46	10	10m at 0.46% CuEq
RCLLA105							34	48	0.29	0.00	0.11	0.44	14	14m at 0.44% CuEq
RCLLA107	190	306963	6529504	1483	-63	290	142	152	0.65	0.00	0.08	0.75	10	10m at 0.75% CuEq
RCLLA109	200	307092	6529302	1469	-59	201	0	12	0.16	0.00	0.18	0.38	12	12m at 0.38% CuEq
RCLLA111	212	306957	6530793	1377	-59	59	0	112	0.18	0.00	0.12	0.33	112	112m at 0.33% CuEq
RCLLA111							36	46	0.25	0.00	0.13	0.41	10	10m at 0.41% CuEq
RCLLA111							48	64	0.30	0.00	0.14	0.47	16	16m at 0.47% CuEq
RCLLA112	204	307222	6529511	1432	-61	89	0	140	0.21	0.00	0.09	0.32	140	140m at 0.32% CuEq
RCLLA112							0	32	0.29	0.00	0.16	0.49	32	32m at 0.49% CuEq
RCLLA112							68	78	0.57	0.00	0.22	0.85	10	10m at 0.85% CuEq
RCLLA113	72	307187	6529494	1436	-59	302	2	72	0.18	0.00	0.09	0.29	70	70m at 0.29% CuEq
RCLLA113							4	14	0.25	0.00	0.13	0.42	10	10m at 0.42% CuEq

	Danth	Collar L	ocation V	VGS84		A =:	From	То	Cu Grade	Mo Grade	Au Grade	CuEq	Width	Internetion Description
Hole ID	Depth	East	North	RL	р	Azimuth	m	m	%	ppm	ppm	%	m	Intersection Description
RCLLA113							62	72	0.25	0.00	0.12	0.40	10	10m at 0.4% CuEq
RCLLA117	228	307214	6529461	1453	-61	181	0	130	0.20	112.00	0.06	0.34	130	130m at 0.34% CuEq
RCLLA117							74	100	0.34	118.46	0.10	0.54	26	26m at 0.54% CuEq
RCLLA118	192	307242	6529404	1451	-59	310	30	62	0.24	15.63	0.08	0.35	32	32m at 0.35% CuEq
RCLLA118							46	60	0.30	17.14	0.08	0.41	14	14m at 0.41% CuEq
RCLLA118							86	100	0.27	38.57	0.06	0.36	14	14m at 0.36% CuEq
RCLLA120	102	307043	6529250	1499	-63	181	0	102	0.18	0.00	0.08	0.29	102	102m at 0.29% CuEq
RCLLA120							38	48	0.39	0.00	0.09	0.50	10	10m at 0.5% CuEq
RCLLA124	72	307021	6531053	1348	-71	153	36	54	0.27	0.00	0.02	0.29	18	18m at 0.29% CuEq
RCLLA124							58	72	0.30	0.00	0.02	0.32	14	14m at 0.32% CuEq
RCLLA126	200	306973	6530884	1352	-75	56	0	144	0.21	0.00	0.08	0.31	144	144m at 0.31% CuEq
RCLLA126							70	82	0.34	0.00	0.12	0.49	12	12m at 0.49% CuEq
RCLLA126							104	118	0.38	0.00	0.09	0.49	14	14m at 0.49% CuEq
RCLLA126							132	142	0.33	0.00	0.11	0.46	10	10m at 0.46% CuEq
RCLLA127	200	307036	6530792	1354	-75	77	0	76	0.13	0.00	0.17	0.34	76	76m at 0.34% CuEq
RCLLA127							48	58	0.20	0.00	0.22	0.47	10	10m at 0.47% CuEq
RCLLA128	210	307313	6529606	1422	-61	95	176	188	0.25	723.33	0.18	0.89	12	12m at 0.89% CuEq
RCLLA129	210	307223	6529608	1437	-56	94	2	58	0.21	18.21	0.08	0.32	56	56m at 0.32% CuEq
RCLLA130	236	307203	6529727	1425	-61	93	0	72	0.16	53.19	0.08	0.30	72	72m at 0.3% CuEq
RCLLA130							6	16	0.10	64.00	0.23	0.43	10	10m at 0.43% CuEq
RCLLA133	204	307221	6529563	1437	-61	88	10	204	0.23	54.23	0.09	0.38	194	194m at 0.38% CuEq
RCLLA133							38	48	0.45	7.00	0.06	0.53	10	10m at 0.53% CuEq
RCLLA133							136	180	0.30	31.36	0.15	0.51	44	44m at 0.51% CuEq
RCLLA134	204	307306	6529558	1424	-59	100	8	204	0.19	66.02	0.07	0.32	196	196m at 0.32% CuEq
RCLLA134							12	22	0.34	7.00	0.03	0.37	10	10m at 0.37% CuEq
RCLLA134							180	204	0.42	155.83	0.26	0.83	24	24m at 0.83% CuEq
RCLLA136	222	307206	6529670	1441	-60	92	98	122	0.54	29.17	0.13	0.71	24	24m at 0.71% CuEq
RCLLA136							100	112	0.91	38.33	0.21	1.20	12	12m at 1.2% CuEq
RCLLA137	216	307116	6529598	1458	-57	93	174	196	0.17	38.64	0.07	0.28	22	22m at 0.28% CuEq
RCLLA137							202	214	0.21	31.67	0.06	0.31	12	12m at 0.31% CuEq
RCLLA141	200	307201	6529290	1448	-60	301	114	134	0.18	37.00	0.06	0.28	20	20m at 0.28% CuEq
RCLLA141							148	188	0.36	80.00	0.09	0.52	40	40m at 0.52% CuEq
RCLLA141							160	170	0.43	74.00	0.10	0.59	10	10m at 0.59% CuEq
RCLLA148	150	307385	6529558	1412	-57	305	32	50	0.19	61.11	0.04	0.28	18	18m at 0.28% CuEq
RCLLA150	200	307270	6529611	1430	-61	94	8	114	0.18	43.77	0.11	0.33	106	106m at 0.33% CuEq
RCLLA150							54	68	0.31	47.14	0.16	0.53	14	14m at 0.53% CuEq
RCLLA150							80	90	0.30	56.00	0.22	0.61	10	10m at 0.61% CuEq
RCLLA151	202	307267	6529510	1426	-60	88	4	176	0.18	63.61	0.08	0.31	172	172m at 0.31% CuEq
RCLLA151							30	42	0.21	10.00	0.11	0.35	12	12m at 0.35% CuEq
RCLLA151							100	122	0.32	120.91	0.10	0.51	22	22m at 0.51% CuEq
RCLLA152	200	307222	6529512	1432	-60	85	6	196	0.22	53.47	0.09	0.36	190	190m at 0.36% CuEq
RCLLA152							18	38	0.32	27.00	0.15	0.52	20	20m at 0.52% CuEq
RCLLA152							42	66	0.30	14.17	0.13	0.48	24	24m at 0.48% CuEq
RCLLA152							96	106	0.22	26.00	0.12	0.39	10	10m at 0.39% CuEq
RCLLA152							156	166	0.20	184.00	0.08	0.41	10	10m at 0.41% CuEq
RCLLA152							184	196	0.26	120.00	0.10	0.44	12	12m at 0.44% CuEq
RCLLA153	178	307318	6529511	1420	-56	87	6	92	0.21	24.42	0.09	0.33	86	86m at 0.33% CuEq
RCLLA153							8	24	0.29	10.00	0.15	0.48	16	16m at 0.48% CuEq
RCLLA153							40	56	0.36	35.00	0.13	0.54	16	16m at 0.54% CuEq

	Donth	Collar L	ocation V	VGS84	Dim	Azimuth	From	То	Cu Grade	Mo Grade	Au Grade	CuEq	Width	Intersection Description
Hole ID	Depth	East	North	RL	pin	Azimuti	m	m	%	ppm	ppm	%	m	Intersection Description
RCLLA154	230	307212	6529465	1452	-61	98	0	36	0.20	26.67	0.08	0.32	36	36m at 0.32% CuEq
RCLLA157	158	307352	6531426	1299	-90	1	130	140	0.25	42.00	0.12	0.42	10	10m at 0.42% CuEq
RCLLA160	180	307186	6530664	1382	-76	66	0	48	0.16	25.42	0.20	0.43	48	48m at 0.43% CuEq
RCLLA160							22	42	0.20	26.00	0.23	0.50	20	20m at 0.5% CuEq
RCLLA160							50	74	0.15	26.67	0.13	0.33	24	24m at 0.33% CuEg
RCLLA160							58	72	0.17	31.43	0.15	0.37	14	14m at 0.37% CuEq
RCLLA160							108	166	0.15	65.52	0.10	0.31	58	58m at 0.31% CuEg
RCLLA160							168	180	0.14	88.33	0.07	0.28	12	12m at 0.28% CuEg
RCLLA162	150	307049	6530776	1355	-59	52	0	10	0.14	20.00	0.24	0.45	10	10m at 0.45% CuEg
RCLLA162							136	146	0.04	30.00	0.66	0.88	10	10m at 0.88% CuEg
RCLLA163	146	307071	6530600	1379	-57	54	0	36	0.14	51.67	0.14	0.34	36	36m at 0.34% CuEq
RCLLA163	-					-	0	32	0.14	53.13	0.15	0.35	32	32m at 0.35% CuEq
RCLLA163							48	102	0.13	17.41	0.19	0.37	54	54m at 0.37% CuEg
RCLLA164	150	307115	6530551	1405	-60	59	0	86	0.18	14.88	0.24	0.48	86	86m at 0.48% CuEg
RCLLA164							88	112	0.12	15.83	0.26	0.45	24	24m at 0.45% CuEq
RCI1A164							88	106	0.14	17.78	0.30	0.53	18	18m at 0.53% CuEq
RCILA165	196	307082	6530478	1404	-63	57	0	196	0.18	33.67	0.14	0.37	196	196m at 0.37% CuEq
RCILA165	100	00/002	0000170	1.01			40	54	0.19	42.86	0.13	0.37	14	14m at 0.37% CuEq
RCILA165							86	104	0.20	35.56	0.10	0.35	18	18m at 0.35% CuEq
RCILA165							110	122	0.25	48 33	0.10	0.55	12	12m at 0.44% CuEq
RCILA165							144	154	0.20	54.00	0.15	0.44	10	10m at 0.35% CuEq
RCILA165							158	168	0.20	88.00	0.09	0.35	10	10m at 0.39% CuEq
RCILA166	200	307116	6530770	1346	-61	56	0	186	0.19	36.77	0.05	0.55	186	186m at 0.56% CuEq
RCILA166	200	50/110	0000770	1010	01	50	2	54	0.22	18.08	0.54	0.50	52	52m at 0.91% CuEq
RCILA166							56	80	0.22	20.83	0.49	0.81	24	24m at 0.88% CuEg
RCILA167	174	307019	6530714	1382	-60	61	0	40	0.20	14 50	0.45	0.00	40	40m at 0.45% CuEq
RCILA167	1/4	507015	0550714	1302	00	01	16	38	0.17	14.55	0.21	0.45	22	22m at 0.61% CuEq
RCILA167							10	82	0.20	10.00	0.32	0.01	22	38m at 0.37% CuEq
RCILA167							44	58	0.12	10.00	0.20	0.57	10	10m at 0.57% CuEq
RCILA168	150	306966	6530637	1/0/	-62	56	40	108	0.17	20.82	0.23	0.34	108	108m at 0.48% CuEq
RCILA168	150	300300	0330037	1404	-02	50	30	108	0.20	16.67	0.21	0.40	100	12m at 0.39% CuEq
RCLLA108							30 19	4Z 60	0.13	16.67	0.19	0.39	12	12m at 0.45% CuEq
RCLLA108							40	102	0.19	26.00	0.20	0.43	12	12111 at 0.43% CuEq
RCLLA108							110	102	0.29	43.00	0.30	0.09	40	40m at 0.55% CuEq
RCLLA100	160	207115	6520422	1202	62	67	0	64	0.18	21 56	0.24	0.31	40 64	64m at 0.39% CuEq
RCLLA170	100	307113	0330422	1392	-02	07	0	19	0.17	24.00	0.08	0.29	10	10m at 0.42% CuEq
RCLLA170	150	207150	6520522	1/1/	50	61	0	26	0.20	22 70	0.11	0.42	10	26m at 0.21% CuEq
RCLLA172	130	30/138	0330333	1414	-39	01	0	12	0.19	22.79	0.08	0.31	12	12m at 0.42% CuEq
RCLLA172							64	76	0.29	20.00	0.10	0.42	12	12m at 0.20% CuEq
RCLLA172	160	207100	6520590	1405	60	57	04	20	0.00	11.00	0.20	0.59	20	12111 at 0.59% CuEq
RCLLA175	100	207499	0550569	1405	-00	27		20	0.19	192.75	0.30	0.04	20	2011 at 0.38% CuEq
RCLLA175	210	307488	0531082	1309	-59	23	50	14	0.14	183.75	0.02	0.28	10	10m at 0.46% CuEq
RCLLA177	218	507074	0000903	1543	-/5	10	4	102	0.30	220.00	0.07	0.40	10	10111 dt 0.40% CUEq
RCLLA177							90	102	0.20	220.00	0.04	0.38	12	12/11 at 0.38% CUEq
RCLLA177							120	162	0.27	1/6.6/	0.03	0.41	30	36m at 0.41% CUEq
RULLAT7	100	207405	(522240	1212		270	148	128	0.32	360.00	0.04	0.58	10	10m at 0.58% CUEq
RCLLAT79	130	307485	0532210	1313	-60	276	120	32	0.50	604.00	0.03	0.89	10	10m at 0.89% CuEq
RCLLA180	138	307594	0532351	1346	-60	2/1	128	138	0.38	20.00	1.64	2.44	10	10m at 2.44% CUEq
RCLLA182	222	306832	0530736	1396	-62	6/	0	202	0.16	44.36	0.09	0.30	202	202m at 0.3% CuEq
RCLLA182							32	50	0.21	10.00	0.18	0.44	18	18m at 0.44% CuEq

	Donth	Collar L	ocation V	VGS84	Din	Azimuth	From	То	Cu Grade	Mo Grade	Au Grade	CuEq	Width	Intersection Description
Hole ID	Depth	East	North	RL	Dip	Azimum	m	m	%	ppm	ppm	%	m	intersection Description
RCLLA182							134	146	0.25	68.33	0.10	0.42	12	12m at 0.42% CuEq
RDLLA001	607.35	307710	6531475	1341	-60	301	38	173	0.30	23.26	0.04	0.36	135	135m at 0.36% CuEq
RDLLA001							42	65	0.35	36.52	0.02	0.39	23	23m at 0.39% CuEq
RDLLA001							71	83	0.35	9.17	0.05	0.42	12	12m at 0.42% CuEq
RDLLA001							87	122	0.38	20.00	0.04	0.44	35	35m at 0.44% CuEq
RDLLA001							174	207	0.43	14.24	0.05	0.50	33	33m at 0.5% CuEq
RDLLA001							177	206	0.47	13.79	0.05	0.54	29	29m at 0.54% CuEq
RDLLA001							208	232	0.43	14.58	0.07	0.52	24	24m at 0.52% CuEq
RDLLA001							208	352	0.56	14.10	0.13	0.74	144	144m at 0.74% CuEq
RDLLA001							234	296	0.70	15.65	0.16	0.91	62	62m at 0.91% CuEq
RDLLA001							298	342	0.56	14.32	0.15	0.75	44	44m at 0.75% CuEq
RDLLA001							356	368	0.59	38.33	0.18	0.83	12	12m at 0.83% CuEq
RDLLA001							356	366	0.68	36.00	0.21	0.97	10	10m at 0.97% CuEq
RDLLA001							374	516	0.35	42.82	0.09	0.48	142	142m at 0.48% CuEq
RDLLA001							382	420	0.48	38.42	0.11	0.65	38	38m at 0.65% CuEq
RDLLA001							422	444	0.42	30.00	0.16	0.64	22	22m at 0.64% CuEq
RDLLA001							446	456	0.49	22.00	0.13	0.66	10	10m at 0.66% CuEq
RDLLA001							486	496	0.46	166.00	0.11	0.70	10	10m at 0.7% CuEq
RDLLA002	463.35	307598	6531426	1328	-58	294	0	10	0.42	6.00	0.04	0.47	10	10m at 0.47% CuEq
RDLLA002							12	154	0.42	9.72	0.08	0.53	142	142m at 0.53% CuEq
RDLLA002							12	70	0.47	6.90	0.06	0.54	58	58m at 0.54% CuEq
RDLLA002							72	132	0.44	12.33	0.12	0.60	60	60m at 0.6% CuEq
RDLLA002							188	326	0.37	7.10	0.20	0.63	138	138m at 0.63% CuEq
RDLLA002							200	290	0.40	6.00	0.23	0.68	90	90m at 0.68% CuEq
RDLLA002							292	318	0.38	9.23	0.20	0.63	26	26m at 0.63% CuEq
RDLLA002							328	350	0.22	6.36	0.08	0.32	22	22m at 0.32% CuEq
RDLLA002							352	364	0.22	13.33	0.10	0.35	12	12m at 0.35% CuEq
RDLLA003	682.25	307841	6531407	1348	-56	301	232	298	0.39	190.30	0.05	0.56	66	66m at 0.56% CuEq
RDLLA003							244	282	0.44	58.95	0.06	0.55	38	38m at 0.55% CuEq
RDLLA003							284	298	0.39	711.43	0.07	0.88	14	14m at 0.88% CuEq
RDLLA003							300	346	0.32	174.78	0.07	0.51	46	46m at 0.51% CuEq
RDLLA003							300	318	0.37	236.67	0.10	0.63	18	18m at 0.63% CuEq
RDLLA003							328	346	0.32	132.22	0.07	0.48	18	18m at 0.48% CuEq
RDLLA003							348	496	0.27	82.97	0.06	0.39	148	148m at 0.39% CuEq
RDLLA003							356	366	0.30	118.00	0.02	0.40	10	10m at 0.4% CuEq
RDLLA003							376	402	0.30	104.62	0.08	0.45	26	26m at 0.45% CuEq
RDLLA003							404	434	0.31	69.33	0.08	0.45	30	30m at 0.45% CuEq
RDLLA003							452	466	0.30	92.86	0.07	0.44	14	14m at 0.44% CuEq
RDLLA003							470	490	0.32	50.00	0.07	0.44	20	20m at 0.44% CuEq
RDLLA003							498	570	0.25	63.89	0.06	0.36	72	72m at 0.36% CuEq
RDLLA003							504	542	0.31	75.26	0.08	0.45	38	38m at 0.45% CuEq
RDLLA005	560.8	307700	6531528	1342	-60	301	22	124	0.28	36.67	0.03	0.33	102	102m at 0.33% CuEq
RDLLA005							54	76	0.32	35.46	0.02	0.37	22	22m at 0.37% CuEq
RDLLA005							88	98	0.31	26.00	0.06	0.39	10	10m at 0.39% CuEq
RDLLA005							126	172	0.20	49.13	0.11	0.37	46	46m at 0.37% CuEq
RDLLA005							136	146	0.31	90.00	0.05	0.42	10	10m at 0.42% CuEq
RDLLA005							212	322	0.24	97.64	0.03	0.33	110	110m at 0.33% CuEq
RDLLA005							268	282	0.28	144.29	0.03	0.40	14	14m at 0.4% CuEq
RDLLA005							324	390	0.27	71.21	0.03	0.35	66	66m at 0.35% CuEq

	Donth	Collar Location W		VGS84	Din	Animuth	From To		Cu Grade Mo Grade Au Grade		CuEq	Width	Intersection Description	
Hole ID	Depth	East	North	RL	pin	Azimuth	m	m	%	ppm	ppm	%	m	Intersection Description
RDLLA005							332	358	0.38	105.39	0.05	0.50	26	26m at 0.5% CuEq
RDLLA007	632.4	307798	6531304	1347	-59	297	180	352	0.18	69.88	0.05	0.28	172	172m at 0.28% CuEq
RDLLA007							336	350	0.22	180.00	0.07	0.41	14	14m at 0.41% CuEq
RDLLA007							354	384	0.22	113.33	0.07	0.38	30	30m at 0.38% CuEq
RDLLA007							364	382	0.25	126.67	0.07	0.41	18	18m at 0.41% CuEq
RDLLA007							508	518	0.39	20.00	0.07	0.49	10	10m at 0.49% CuEq
RDLLA007							540	586	0.16	23.91	0.09	0.29	46	46m at 0.29% CuEq
RDLLA007							558	568	0.26	30.00	0.22	0.54	10	10m at 0.54% CuEq
RDLLA009	523.6	307694	6531380	1333	-60	304	4	54	0.21	11.60	0.06	0.29	50	50m at 0.29% CuEq
RDLLA009							56	192	0.37	40.44	0.07	0.49	136	136m at 0.49% CuEq
RDLLA009							64	114	0.41	42.40	0.07	0.52	50	50m at 0.52% CuEq
RDLLA009							126	192	0.39	25.76	0.09	0.52	66	66m at 0.52% CuEq
RDLLA009							198	348	0.40	0.40	0.26	0.72	150	150m at 0.72% CuEq
RDLLA009							200	344	0.41	0.42	0.26	0.74	144	144m at 0.74% CuEq
RDLLA010	561.7	307613	6531515	1346	-58	292	0	38	0.32	0.00	0.06	0.39	38	38m at 0.39% CuEq
RDLLA010							18	37	0.46	0.00	0.04	0.51	19	19m at 0.51% CuEq
RDLLA010							83	93	0.36	0.00	0.05	0.43	10	10m at 0.43% CuEq
RDLLA010							103	290	0.44	8.34	0.12	0.60	187	187m at 0.6% CuEq
RDLLA010							117	156	0.45	0.00	0.12	0.60	39	39m at 0.6% CuEq
RDLLA010							157	262	0.49	9.71	0.14	0.68	105	105m at 0.68% CuEq
RDLLA010							266	284	0.35	10.00	0.11	0.49	18	18m at 0.49% CuEq
RDLLA010							300	418	0.19	43.56	0.05	0.28	118	118m at 0.28% CuEq
RDLLA013	702.35	307784	6531372	1343	-60	303	147	247	0.25	37.80	0.03	0.31	100	100m at 0.31% CuEq
RDLLA013							229	241	0.69	53.33	0.07	0.81	12	12m at 0.81% CuEq
RDLLA013							261	279	0.29	0.00	0.11	0.43	18	18m at 0.43% CuEq
RDLLA013							263	279	0.32	0.00	0.12	0.47	16	16m at 0.47% CuEq
RDLLA013							285	301	0.33	15.00	0.11	0.48	16	16m at 0.48% CuEq
RDLLA013							289	301	0.38	20.00	0.14	0.57	12	12m at 0.57% CuEq
RDLLA013							307	321	0.40	30.00	0.14	0.59	14	14m at 0.59% CuEq
RDLLA013							323	339	0.34	18.75	0.15	0.53	16	16m at 0.53% CuEq
RDLLA013							343	391	0.38	10.83	0.26	0.71	48	48m at 0.71% CuEq
RDLLA013							343	455	0.36	8.57	0.33	0.78	112	112m at 0.78% CuEq
RDLLA013							403	425	0.34	8.18	0.47	0.94	22	22m at 0.94% CuEq
RDLLA013							427	455	0.42	5.00	0.44	0.98	28	28m at 0.98% CuEq
RDLLA013							475	491	0.20	6.25	0.17	0.42	16	16m at 0.42% CuEq
RDLLA013							475	485	0.21	8.00	0.21	0.47	10	10m at 0.47% CuEq
RDLLA013							511	563	0.17	10.77	0.14	0.35	52	52m at 0.35% CuEq
RDLLA013							515	529	0.23	11.43	0.28	0.58	14	14m at 0.58% CuEq
RDLLA013							655	671	0.39	18.75	0.06	0.48	16	16m at 0.48% CuEq
RDLLA014	557.5	307665	6531332	1334	-61	304	84	124	0.24	0.00	0.03	0.28	40	40m at 0.28% CuEq
RDLLA014							102	120	0.33	0.00	0.05	0.39	18	18m at 0.39% CuEq
RDLLA014					ļ		128	364	0.24	6.44	0.07	0.33	236	236m at 0.33% CuEq
RDLLA014					ļ		212	244	0.35	8.75	0.11	0.49	32	32m at 0.49% CuEq
RDLLA014							260	270	0.25	16.00	0.08	0.36	10	10m at 0.36% CuEq
RDLLA014							284	298	0.28	10.00	0.04	0.33	14	14m at 0.33% CuEq
RDLLA014							306	322	0.28	11.25	0.07	0.37	16	16m at 0.37% CuEq
RDLLA015	459.65	307512	6531216	1327	-60	298	300	338	0.21	21.47	0.07	0.32	38	38m at 0.32% CuEq
RDLLA016	348.8	307537	6531548	1334	-59	296	0	32	0.61	0.00	0.08	0.70	32	32m at 0.7% CuEq
RDLLA016							44	286	0.33	35.58	0.06	0.42	242	242m at 0.42% CuEq

	Donth	Collar Location WGS8		VGS84	Din	Azimuth	From	То	Cu Grade	Mo Grade	Au Grade	CuEq	Width	Intersection Description
Hole ID	Depth	East	North	RL	pin	Azimuth	m	m	%	ppm	ppm	%	m	Intersection Description
RDLLA016							44	92	0.51	3.54	0.05	0.56	48	48m at 0.56% CuEq
RDLLA016							102	116	0.32	21.43	0.05	0.39	14	14m at 0.39% CuEq
RDLLA016							134	154	0.35	35.00	0.07	0.46	20	20m at 0.46% CuEq
RDLLA016							156	178	0.31	47.27	0.07	0.43	22	22m at 0.43% CuEq
RDLLA016							180	214	0.32	60.00	0.06	0.43	34	34m at 0.43% CuEq
RDLLA016							222	248	0.36	82.31	0.10	0.53	26	26m at 0.53% CuEq
RDLLA016							338	348	0.26	56.00	0.05	0.35	10	10m at 0.35% CuEq
RDLLA017	646	307887	6531384	1352	-60	289	280	348	0.20	51.77	0.04	0.28	68	68m at 0.28% CuEq
RDLLA017							302	316	0.29	82.86	0.05	0.40	14	14m at 0.4% CuEq
RDLLA017			İ				382	404	0.20	32.73	0.10	0.34	22	22m at 0.34% CuEg
RDLLA017							464	504	0.24	70.50	0.02	0.31	40	40m at 0.31% CuEg
RDLLA017			İ				506	592	0.23	52.33	0.07	0.35	86	86m at 0.35% CuEq
RDLLA017							518	528	0.26	38.00	0.08	0.38	10	10m at 0.38% CuEq
RDLLA017							554	570	0.28	58.75	0.10	0.43	16	16m at 0.43% CuEg
RDLLA017							582	592	0.26	68.00	0.11	0.43	10	10m at 0.43% CuEq
RDILA017							626	646	0.16	11.00	0.16	0.36	20	20m at 0.36% CuEq
RDLLA020	509.5	307529	6531490	1334	-62	287	3	94	0.51	0.00	0.07	0.61	91	91m at 0.61% CuEq
RDLLA020	505.5	00/020	0001.00	100.		207	3	41	0.63	0.00	0.10	0.76	38	38m at 0.76% CuEq
RDLLA020							42	53	0.60	0.00	0.03	0.64	11	11m at 0.64% CuEq
RDLLA020							60	93	0.00	0.00	0.03	0.01	33	33m at 0.49% CuEq
RDLLA020							98	196	0.40	0.00	0.07	0.45	98	98m at 0.3% CuEq
RDLLA020							207	316	0.27	1 28	0.03	0.30	109	109m at 0.41% CuEq
RDLLA020							207	266	0.27	0.00	0.11	0.41	36	36m at 0.54% CuEq
RDLLA020							290	304	0.30	0.00	0.12	0.54	12	12m at 0.59% CuEq
RDLLA020	572.8	307530	6531490	1334	-90	182	0	58	0.50	0.00	0.23	0.35	58	58m at 0.28% CuEq
RDLLA022	572.0	307330	0551450	1334	50	102	26	48	0.25	0.00	0.02	0.20	22	22m at 0.35% CuEq
RDLLA022							60	78	0.31	0.00	0.04	0.33	18	18m at 0.28% CuEq
RDLLA022							80	102	0.27	0.00	0.01	0.20	112	112m at 0.2% CuEq
RDLLA022							168	192	0.24	0.00	0.05	0.50	112	12m at 0.5% CuEq
RDLLA022							100	224	0.30	0.00	0.11	0.30	12	120m at 0.20% CuEq
RDLLA022							226	24	0.23	0.00	0.11	0.39	10	10m at 0.55% CuEq
RDLLA022							250	240	0.31	0.00	0.20	0.50	10	10m at 0.50% CuEq
RDLLA022							250	208	0.34	0.00	0.13	0.32	24	1811 at 0.32% CuEq
RDLLA022	440 5	207657	6521116	1224	00	200	550	260	0.25	10.52	0.05	0.28	24	24111 dt 0.20% CuEq
RDLLA023	440.5	307037	0331440	1554	-90	309	0	200	0.37	10.32	0.07	0.47	200	200m at 0.47 % CuEq
RDLLA023							22	30	0.41	0.00	0.07	0.30	42	42m at 0.46% CuEa
RDLLA023							32	112	0.39	0.00	0.00	0.40	42	42111 at 0.46% CuEq
RDLLA023							92	112	0.50	0.00	0.07	0.40	20	2011 at 0.40% CuEq
RDLLA023							130	200	0.42	0.00	0.09	0.53	30	30m at 0.00% CuEq
RDLLA023			-				104	200	0.31	25.56	0.14	0.09	42	42111 at 0.59% CuEq
RDLLA023							222	252	0.38	21.67	0.11	0.53	30	30m at 0.53% CuEq
KULLAU23							262	276	0.35	12.14	0.17	0.57	14	14m at 0.57% CuEq
RDLLA023							262	2/4	0.38	13.33	0.19	0.63	12	12m at 0.63% CuEq
RDLLA023							2/8	440.5	0.23	19.08	0.08	0.34	162.5	162.5m at 0.34% CuEq
RDLLA023							316	358	0.28	1/.14	0.13	0.45	42	42m at 0.45% CuEq
RDLLA023							366	376	0.32	12.00	0.18	0.55	10	10m at 0.55% CuEq
RDLLA023		20700	6524.005	4051		200	380	390	0.38	11.00	0.06	0.45	10	10m at 0.45% CuEq
RDLLA024	575.5	30/821	6531483	1354	-60	300	228	496	0.30	155.00	0.04	0.43	268	268m at 0.43% CuEq
RDLLA024					ļ		232	258	0.23	201.54	0.01	0.35	26	26m at 0.35% CuEq
RDLLA024							262	282	0.30	147.00	0.05	0.44	20	20m at 0.44% CuEq

Hole ID Donth		Collar Location WGS84			Dim	Azimuth	From	То	Cu Grade	Mo Grade	Au Grade	CuEq	Width	Intersection Description
HOLE ID	Depth	East	North	RL	ыр	Azimuti	m	m	%	ppm	ppm	%	m	Intersection Description
RDLLA024							284	298	0.38	224.29	0.03	0.55	14	14m at 0.55% CuEq
RDLLA024							300	354	0.33	204.44	0.04	0.50	54	54m at 0.5% CuEq
RDLLA024							356	402	0.31	182.17	0.06	0.49	46	46m at 0.49% CuEq
RDLLA024							404	420	0.42	126.25	0.04	0.54	16	16m at 0.54% CuEq
RDLLA024							424	436	0.40	78.33	0.04	0.49	12	12m at 0.49% CuEq
RDLLA024							438	452	0.29	132.86	0.04	0.42	14	14m at 0.42% CuEq
RDLLA024							474	488	0.36	98.57	0.05	0.47	14	14m at 0.47% CuEq
RDLLA024							498	520	0.22	218.18	0.06	0.41	22	22m at 0.41% CuEq
RDLLA024							502	516	0.29	267.14	0.08	0.54	14	14m at 0.54% CuEq
RDLLA025	596.5	307441	6531442	1308	-60	34	26	376	0.39	11.91	0.23	0.69	350	350m at 0.69% CuEq
RDLLA025							52	66	0.31	0.00	0.07	0.40	14	14m at 0.4% CuEq
RDLLA025							102	230	0.41	9.69	0.20	0.67	128	128m at 0.67% CuEq
RDLLA025			Including				232	284	0.54	16.15	0.54	1.22	52	52m at 1.22% CuEq
RDLLA025							290	356	0.47	21.52	0.28	0.82	66	66m at 0.82% CuEq
RDLLA025							378	474	0.44	54.38	0.19	0.71	96	96m at 0.71% CuEq
RDLLA025							378	424	0.55	26.96	0.28	0.91	46	46m at 0.91% CuEq
RDLLA025							426	454	0.46	57.86	0.16	0.69	28	28m at 0.69% CuEq
RDLLA025							456	468	0.26	105.00	0.06	0.40	12	12m at 0.4% CuEq
RDLLA026	581.5	307516	6531334	1321	-60	33	92	294	0.26	6.19	0.18	0.49	202	202m at 0.49% CuEq
RDLLA026							160	184	0.32	8.33	0.15	0.50	24	24m at 0.5% CuEq
RDLLA026							188	198	0.35	5.00	0.39	0.83	10	10m at 0.83% CuEq
RDLLA026							202	216	0.30	5.00	0.28	0.65	14	14m at 0.65% CuEq
RDLLA026							224	294	0.31	7.57	0.29	0.68	70	70m at 0.68% CuEq
RDLLA026							296	398	0.40	14.41	0.31	0.80	102	102m at 0.8% CuEq
RDLLA026							300	396	0.42	14.27	0.33	0.83	96	96m at 0.83% CuEq
RDLLA026							400	410	0.20	36.00	0.19	0.45	10	10m at 0.45% CuEq
RDLLA026							440	478	0.26	135.79	0.06	0.42	38	38m at 0.42% CuEq
RDLLA026							440	468	0.29	137.14	0.08	0.47	28	28m at 0.47% CuEq
RDLLA026							480	524	0.19	97.27	0.03	0.29	44	44m at 0.29% CuEq
RDLLA039	490.95	307026	6530955	1349	-83	353	0	186	0.31	0.00	0.09	0.42	186	186m at 0.42% CuEq
RDLLA039							36	116	0.46	0.00	0.11	0.60	80	80m at 0.6% CuEq
RDLLA039							118	128	0.37	0.00	0.12	0.52	10	10m at 0.52% CuEq
RDLLA039							188	210	0.23	70.00	0.06	0.34	22	22m at 0.34% CuEq
RDLLA050	310.1	306872	6530873	1370	-75	74	208	266	0.23	57.24	0.09	0.37	58	58m at 0.37% CuEq
RDLLA050							228	240	0.26	46.67	0.11	0.42	12	12m at 0.42% CuEq
RDLLA053	400	307018	6530983	1350	-54	59	0	74	0.31	0.00	0.04	0.36	74	74m at 0.36% CuEq
RDLLA053							6	20	0.46	0.00	0.04	0.51	14	14m at 0.51% CuEq
RDLLA053							30	58	0.34	0.00	0.05	0.40	28	28m at 0.4% CuEq
RDLLA053							78	186	0.34	14.31	0.05	0.41	108	108m at 0.41% CuEq
RDLLA053							118	128	0.33	0.00	0.06	0.40	10	10m at 0.4% CuEq
RDLLA053							136	154	0.65	0.00	0.06	0.72	18	18m at 0.72% CuEq
RDLLA053							168	182	0.58	100.00	0.06	0.71	14	14m at 0.71% CuEq

I ala ID	Dauth	Collar L	ocation V	NGS84	Dia	A !	From	То	Cu Grade	Mo Grade	Au Grade	CuEq	Width	Internetion Description
Hole ID	Depth	East	North	RL	Dip	Azimuth	m	m	%	ppm	ppm	%	m	Intersection Description
23LHRD027	197.2	307066	6530956	1348	-60	300	0	156	0.41	62.74	0.09	0.56	156	156m at 0.56% CuEq
23LHRD028	261.9	307104	6530903	1342	-57	300	42	178	0.27	167.24	0.17	0.58	136	136m at 0.58% CuEq
23LHRD033	107.4	307249	6530799	1344	-60	300	66	84	0.25	82.88	0.24	0.60	18	18m at 0.6% CuEq
23LHRD031	111.6	307211	6530742	1352	-60	300	2	14	0.16	3.86	0.19	0.40	12	12m at 0.4% CuEq
							28	46	0.18	23.26	0.40	0.69	18	18m at 0.69% CuEq
							56	104	0.19	38.76	0.22	0.49	48	48m at 0.49% CuEq
23LHRC032	79	307172	6530778	1349	-70	300	0	79	0.23	10.31	0.30	0.61	79	79m at 0.61% CuEq
			Including				0	12	0.31	8.43	0.50	0.94	12	12m at 0.94% CuEq
23LHRC030	82	307201	6530700	1372	-60	300	0	10	0.22	6.61	0.17	0.44	10	10m at 0.44% CuEq
							18	74	0.13	19.67	0.16	0.34	56	56m at 0.34% CuEq
			Including				48	56	0.24	9.73	0.35	0.68	8	8m at 0.68% CuEq
23LHRC029	84	307189	6530664	1382	-60	300	0	54	0.15	14.34	0.22	0.43	54	54m at 0.43% CuEq
			Including				0	14	0.27	17.26	0.38	0.75	14	14m at 0.75% CuEq
23LHRD034	234.8	307155	6530535	1413.9	-60	300	0	162	0.18	15.85	0.13	0.35	162	162m at 0.35% CuEq
			Including				0	12	0.28	14.44	0.29	0.65	12	12m at 0.65% CuEq
23LHRD035	181.4	307116	6530618	1378.3	-60	300	0	76	0.2	7.2	0.34	0.63	76	76m at 0.63% CuEq
			Including				0	14	0.3	4.56	0.67	1.14	14	14m at 1.14% CuEq
							122	134	0.23	0	0.23	0.52	12	12m at 0.52% CuEq
23LHRD036	188.95	307074	6529918	1426	-60	280	32	64	0.17	64.67	0.13	0.37	32	32m at 0.37% CuEq
							142	156	0.14	109.35	0.08	0.30	14	14m at 0.3% CuEq
23LHRC037	60	307065	6530000	1424.4	-60	280	0	12	0.18	6.04	0.13	0.35	12	12m at 0.35% CuEq
23LHRC038	180	307994	6528405	1569.8	-50	290	2	166	0.08	16.2	0.1	0.21	164	164m at 0.21% CuEq
23LHRC039	189	307962	6528357	1542.2	-50	300	28	134	0.07	14.21	0.07	0.17	106	106m at 0.17% CuEq
							168	170	0.04	3.54	1.97	2.50	2	2m at 2.5% CuEq
23LHRD040	272.3	307216	6529238	1459.2	-60	300	228	272.3	0.23	71.14	0.04	0.32	44.3	44.3m at 0.32% CuEq
23LHRD041	219.8	307264	6529463	1440.1	-60	300	0	219.8	0.14	73.94	0.09	0.29	219.8	219.8m at 0.29% CuEq
			Including				0	32	0.25	6.49	0.15	0.44	32	32m at 0.44% CuEq
			Including				196	212	0.24	193.32	0.1	0.48	16	16m at 0.48% CuEq
23LHRC042	88	307132	6529158	1496.4	-60	300	0	48	0.38	12.69	0.09	0.50	48	48m at 0.5% CuEq
23LHRD043	249.4	307185	6530250	1395.1	-60	270	0	94	0.18	108.1	0.12	0.39	94	94m at 0.39% CuEq
							136	148	0.14	111.9	0.08	0.30	12	12m at 0.3% CuEq

	Donth	Collar L	ocation V	NGS84	Din	A	From	То	Cu Grade	Mo Grade	Au Grade	CuEq	Width	Intersection Description
Hole ID	Depth	East	North	RL	pin	Azimuth	m	m	%	ppm	ppm	%	m	
24LHRC044	86	307172	6529121	1496	-60	300	0	42	0.11	22.39	0.06	0.19	42	42m at 0.19% CuEq
			Including				0	2	0.27	16.35	0.13	0.43	2	2m at 0.43% CuEq
24LHRC045	116	307164	6529149	1512	-60	300	0	102	0.23	33.51	0.09	0.35	102	102m at 0.35% CuEq
			Including				2	30	0.32	23.30	0.08	0.44	28	28m at 0.44% CuEq
			Including				72	90	0.25	69.56	0.11	0.43	18	18m at 0.43% CuEq
24LHRC046	92	307199	6529153	1474	-60	300	0	4	0.12	8.96	0.03	0.16	4	4m at 0.16% CuEq
							36	40	0.04	17.10	0.08	0.15	4	4m at 0.15% CuEq
24LHRC047	132	307126	6529117	1507	-60	300	84	104	0.22	33.48	0.18	0.46	20	20m at 0.46% CuEq
							106	120	0.25	165.64	0.08	0.44	14	14m at 0.44% CuEq
24LHRC048	124	307168	6529087	1508	-60	300	2	124	0.25	40.04	0.13	0.44	122	122m at 0.44% CuEq
			Including				66	114	0.32	45.51	0.17	0.55	48	48m at 0.55% CuEq
24LHRC049	150	307152	6529013	1530	-60	300	78	82	0.26	1.79	0.08	0.36	4	4m at 0.36% CuEq
24LHRC050	76	307062	6529120	1546	-60	300				NSI				
24LHRC051	168	307062	6529116	1540	-60	120	72	166	0.20	15.00	0.09	0.32	94	94m at 0.32% CuEq
			Including				102	118	0.35	6.93	0.16	0.55	16	16m at 0.55% CuEq
24LHRC052	70	307451	6529177	1430	-60	300	2	14	0.08	4.30	0.04	0.13	12	12m at 0.13% CuEq
							16	22	0.13	3.30	0.02	0.15	6	6m at 0.15% CuEq
							46	48	0.07	3.63	0.03	0.11	2	2m at 0.11% CuEq
24LHRC053	88	307028	6530976	1357	-60	300	0	54	0.21	6.42	0.05	0.28	54	54m at 0.28% CuEq
			Including				0	14	0.38	4.25	0.06	0.46	14	14m at 0.46% CuEq
24LHRC054	76	307105	6531015	1340	-60	300				NSI				
24LHRC055	83	307104	6530899	1338	-80	300	2	83	0.22	112.35	0.20	0.53	81	81m at 0.53% CuEq
			Including				30	78	0.24	171.62	0.23	0.62	48	48m at 0.62% CuEq
24LHRC056	90	307102	6530845	1339	-60	300	0	90	0.18	63.70	0.15	0.40	90	90m at 0.4% CuEq
			Including				66	72	0.21	120.73	0.23	0.57	6	6m at 0.57% CuEq
			Including				80	90	0.22	107.12	0.19	0.52	10	10m at 0.52% CuEq
24LHRC057	56	307062	6530604	1385	-60	300	4	56	0.21	18.23	0.20	0.48	52	52m at 0.48% CuEq
24LHRC058	132	307194	6530586	1410	-60	300	0	132	0.16	5.82	0.30	0.53	132	132m at 0.53% CuEq
			Including				0	60	0.21	3.88	0.43	0.76	60	60m at 0.76% CuEq
			Including				62	68	0.14	7.14	0.41	0.66	6	6m at 0.66% CuEq
24LHRC059	76	307213	6530883	1332	-60	230	36	42	0.29	91.37	0.06	0.42	6	6m at 0.42% CuEq
							56	62	0.16	121.30	0.15	0.41	6	6m at 0.41% CuEq
							58	60	0.28	196.00	0.32	0.79	2	2m at 0.79% CuEq
24LHRC060	114	307174	6529091	1503	-76	300	4	114	0.19	35.52	0.10	0.34	110	110m at 0.34% CuEq
			Including				12	30	0.30	5.48	0.20	0.55	18	18m at 0.55% CuEq
24LHRC061	132	307172	6529049	1509	-59	300	26	132	0.26	6.14	0.11	0.40	106	106m at 0.4% CuEq
			Including				40	94	0.35	1.38	0.13	0.51	54	54m at 0.51% CuEq
24LHRC062	106	306966	6530634	1405	-76	60	0	106	0.18	35.99	0.14	0.38	106	106m at 0.38% CuEq
			Including				38	74	0.24	43.29	0.20	0.51	36	36m at 0.51% CuEq
24LHRC063	76	306892	6530587	1395	-60	45	0	76	0.12	39.00	0.11	0.28	76	76m at 0.28% CuEq
			Including				28	38	0.16	2.44	0.20	0.41	10	10m at 0.41% CuEq
24LHRC064	104	306926	6530724	1410	-60	300	0	104	0.18	21.72	0.14	0.37	104	104m at 0.37% CuEq
			Including				22	66	0.25	10.33	0.20	0.50	44	44m at 0.5% CuEq
24LHRC065	105	307024	6530659	1397.5	-60	300	0	105	0.26	59.75	0.33	0.71	105	105m at 0.71% CuEq
			Including				0	16	0.28	14.35	0.52	0.95	16	16m at 0.95% CuEq
			Including				78	104	0.29	194.00	0.48	1.00	26	26m at 1% CuEq